The Swedish tech industry in 2025

About the report

The report Swedish Tech Industry 2025 – Digital Opportunities and Global Barriers in a

new geopolitical landscape is the third edition of TechSweden's report series The Swedish Tech Industry. The report is published annually to provide an upto-date picture of the current situation and future prospects for the Swedish tech industry. The report is the result of a collaboration between TechSweden and the analysis company Makrologik.

"Technology has become the new arena for global competition, where innovation and digital infrastructure determine nations' freedom of action."

The Swedish tech industry in 2025

Digital opportunities and global obstacles in a new geopolitical landscape

Contents

Foreword	
The future is shaped by the force field of technology	05
Chapter 1	
The role of tech companies in the economy	08
Chapter 2	
The people in the tech industry	36
Chapter 3	
Technology, geopolitics, and international trade	46
– how does Swedish tech fare in a new geopolitical landscape?	
Chapter 4	
World view future scenarios, and forecasts	82

"Our forecasts show that the tech industry could grow by between 20 and 27 percent by 2028."

Foreword

The future is being shaped in the force field of technology

The world is entering a new phase in technological development and a new geopolitical situation. War, bloc formation in the global economy, and trade restrictions have made technology a strategic resource - a matter of both economics and security. At the same time, global value chains are changing as innovation, data, and software become more important. Seventy percent of all value creation in the global economy over the next decade is expected to be based on digitally enabled, platform-based business models.

In this new reality, Swedish tech is emerging as one of the country's most dynamic industries, where tech companies – both locally and internationally – work in close partnership with their customers in other sectors to increase productivity, resilience and create more business opportunities. Despite the weak economy in 2024, tech industry exports grew to record levels. Tech exports are approaching SEK 400 billion, most of which consists of services – data services, telecom services and other intangible exports. The industry has exceeded SEK 1,100 billion in turnover and consists of over 60,000 companies and more than 260,000 employees.

But development is not just about growth. Technology has become the new arena for global competition,

where innovation and digital infrastructure determine nations' freedom of action. The US's dominance in cloud services and AI, the EU's attempts at digital sovereignty, and China's control of raw materials and efforts to become self-sufficient in technology show how trade and security are intertwined. For Swedish companies, this means new opportunities – but also increased complexity and growing obstacles in the form of export controls, data laws and security requirements.

Looking ahead, continued strong growth is expected in AI, cybersecurity, cloud services, electrification, and industrial 5G solutions. Our forecasts show that the tech industry could grow by between 20 and 27 percent by 2028, which would further strengthen its role as a strategic hub in Swedish business – both economically and in terms of security policy.

Sweden's strength lies in its combination of a positive attitude to new technology, openness and innovative power. This combination is more important than ever at a time when innovation is becoming globalized and trade is becoming politicized. With the right conditions—including strengthened conditions for research, skills provision, entrepreneurship, and digital infrastructure—Swedish tech can continue to be the engine that drives the country through the next era of technological and geopolitical transformation.

Christina Ramm-Ericson Chief Economist, TechSverige

Åsa Zetterberg CEO, TechSverige

The tech industry and its prospects in figures¹

1133

SEK billion

Industry turnover in 2024, an increase of 1.6 percent

194

billion Swedish kronor

Tax payments for welfare and public services in 2024

336

SEK billion

Industry contribution to GDP in 2024*

20-27 %

Forecast industry growth until 2028

¹ The report uses different statistical definitions of the tech industry depending on the availability of data. Unless otherwise stated in the text, the tech industry refers to companies classified according to SNI codes 26.110, 26.120, 26.200, 26.300–400, 26.510, 26.800, 42.220, 46.142, 46.510, 46.521–522 58.210, 58.290, 61.100, 61.200, 61.300, 61.900, 62.010, 62.020, 62.030, 62.090,

63.110, 63.120, 82.200, and 95.110. This definition probably underestimates the scope of the tech industry in a broader sense, including products and services in industries that exist in the borderland between the traditional IT and telecom industries and other traditional industries.

*Refers to fixed prices and with 2015 as the reference year

Chapter 1 The role of tech companies in the Swedish economy

Swedish tech companies are the engine behind the growth and innovation that drives the country forward. This chapter analyzes the structure, geographical distribution, and future growth opportunities of the tech industry. We highlight:

How tech companies are growing and how their significance varies

- between different regions.
- The structure, new business creation, and dynamics of the industry.

Where the customers are – and which segments are expected to grow fastest in the coming years.

The Swedish tech industry continues to grow

In 2024, Swedish tech companies sold goods and services worth SEK 1,133 billion, an increase of 1.6 percent compared with 2023. By comparison, Swedish GDP grew by 0.8 percent during the same period.2 Although growth in the tech industry is lower than we have become accustomed to, the industry is nevertheless consolidating its role as a driver of the Swedish economy. Over the past decade, structural growth has been high and turnover has almost doubled, with an average annual growth rate of 6.4 percent. Industry turnover in 2024 corresponds to around three-quarters of the Swedish state budget for 2026.3

The fact that the tech industry continues to grow despite a turbulent global environment—characterized by trade barriers, a tense security policy situation, and a prolonged economic downturn—underscores how crucial digitalization and new technology have become for both businesses and consumers.

and new technology have become for both businesses and consumers. New products and services in AI, cloud services, and cybersecurity are being used to streamline operations, increase productivity, secure critical infrastructure, and improve the sustainability and resilience of society. Together, these areas are driving technological shifts that currently account for a large part of the industry's growth.

Swedish tech companies also contribute significant tax revenues. In 2024, the industry paid SEK 194 billion in taxes to the state, municipalities, and regions.4 That amount would be enough to cover Sweden's military defense budget and the cost of reducing food VAT in 2026.5 For every percentage point of industry growth, approximately SEK 2 billion in new tax revenue is generated.

² In fixed prices.

³ According to the government, the total expenditure in the state budget for 2026 amounts to SEK 1,543 billion. See Government, Budget Bill for 2026, Prop. 2025/26:1, Ministry of Finance, Stockholm, September 18, 2025.

⁴ Of the SEK 194 billion in tax payments, SEK 88 billion is estimated to come from VAT, SEK 44 billion from payroll taxes, SEK 42 billion from employer contributions, and SEK 19 billion from corporate taxes.

⁵ Source: Government Offices. According to the government, the appropriation for military defense in 2026 is estimated at SEK 175 billion (excluding support to Ukraine). The reduction in food VAT is expected to cost SEK 16 billion in 2026.

Slightly rising turnover in 2024 but high structural growth

Tech companies' turnover 2007–2024 in SEK billion 6

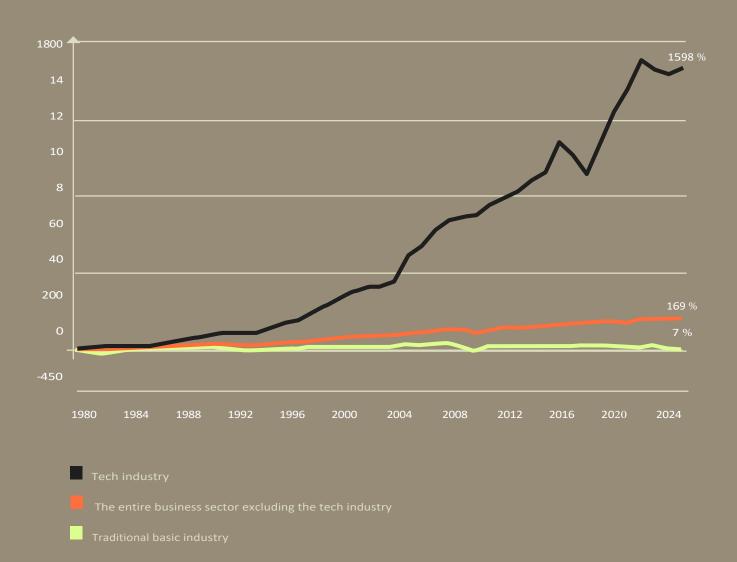
⁶ Source: Statistics Sweden, Business Economics (2007–2023), Swedish Tax Agency, and own calculations (2024). The figure for 2024 is preliminary and based on VAT statistics for companies within SNI codes 26 and 61–63.

A growth engine in the Swedish economy

Tech has grown rapidly in recent decades and accounts for an increasing share of value creation in the Swedish economy. The tech industry's value added—that is, its contribution to Sweden's GDP—has increased exponentially since 1980, while developments in other parts of the economy have followed a linear curve.

In 2024, the tech industry accounted for 7.8 percent of Sweden's total GDP, corresponding to SEK 336 billion in added value – an increase of 0.1 percentage points compared to 2023.7 During the 2000s, the tech industry has developed into Sweden's new basic industry – a key part of today's and tomorrow's social infrastructure. The contribution to GDP from tech companies has comfortably surpassed that of companies in traditional basic industries.8

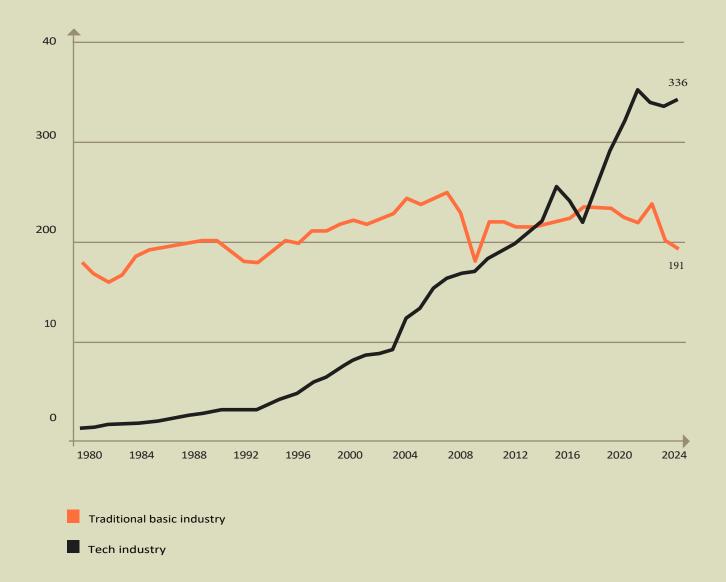
In addition to its direct contribution to the Swedish economy, the tech industry drives growth in other sectors by creating new markets, increasing productivity, and enabling efficiency improvements as a supplier and partner. Through increasingly advanced digital services and products — which are now crucial to modern production, skills supply and logistics — companies can use resources more efficiently, reach more customers and create greater value. For example, an evaluation by the Swedish Agency for Growth Policy Analysis showed that nearly half of Sweden's productivity growth between 2006 and 2013 could be linked to digitization and technology investments.9


⁷ The figures in SEK refer to 2015 price levels. Last year's report stated that the tech industry's share of GDP was 8.0 percent. Revisions to GDP statistics following a review by Statistics Sweden have led to a downward adjustment of the 2023 figure to 7.7 percent.

⁸ Source: Statistics Sweden, National Accounts. Refers to fixed prices with reference year 2015. The tech industry refers to SNI codes 26 and 61–63.

⁹ Source: Growth Analysis (2014). The contribution of digitalization to growth and competitiveness in Sweden. Between 2006 and 2013, the ICT sector and ICT investments accounted for 42 percent of productivity growth.

The tech industry's added value has grown exponentially since 1980


Development of added value in tech, traditional basic industry, and business 10

¹⁰ Source: Statistics Sweden, National Accounts. Refers to accumulated development 1980–2024 in fixed prices. The tech industry refers to SNI codes 26 and 61–63.

Tech is Sweden's new basic industry

Contribution to GDP from tech and traditional basic industry, 1980–2024 11

¹¹ Refers to fixed prices with reference year 2015. Source: Statistics Sweden, National Accounts and own calculations. The tech industry refers to SNI codes 26 and 61–63. Due to the way the national accounts are designed, this results in a slight underestimation of the tech industry, as the definition excludes certain tech companies, including resellers and service providers of IT products and certain software development companies. Traditional basic industry is defined in the diagram as SNI 1–8, 16–18, and 22–25.

More tech companies in more market clusters

In 2024, the net increase in the number of active tech companies was around 1,500, compared to around 1,000 companies the year before. Of the more than 6,000 new tech companies that were started, most were limited companies. New business start-ups continued to increase in 2025, bringing the number of active companies in the tech industry to over 60,000 for the first time.

The tech industry can be divided into four main segments: software and IT services, telecommunications and infrastructure, hardware manufacturing, and retail and services. Software

and IT services account for about two-thirds of turnover – preliminarily about SEK 741 billion in 2024 – and is also the segment that has grown fastest in terms of trends in the 21st century.

Tech companies' activities create new market clusters when technology crosses different sectors of society

and contributes to solving problems, enabling innovation, and streamlining operations. For example, a cluster of healthtech companies is emerging that is integrated into healthcare, where companies are developing advanced AI and data-driven healthcare solutions.

In cleantech, technological development is driving the green transition, and in indtech, digitization and industrial production are converging.

Some tech clusters—including biotech, medtech, and cleantech—are sometimes considered part of the Swedish deep tech sector. The concept encompasses research-intensive technology areas driven by scientific breakthroughs, often protected by patents or other intellectual property rights, and which have the potential to transform industries and create entirely new markets. Industrifonden estimates that the Swedish deep tech sector grew by approximately 30 percent per year between 2010 and 2023.12

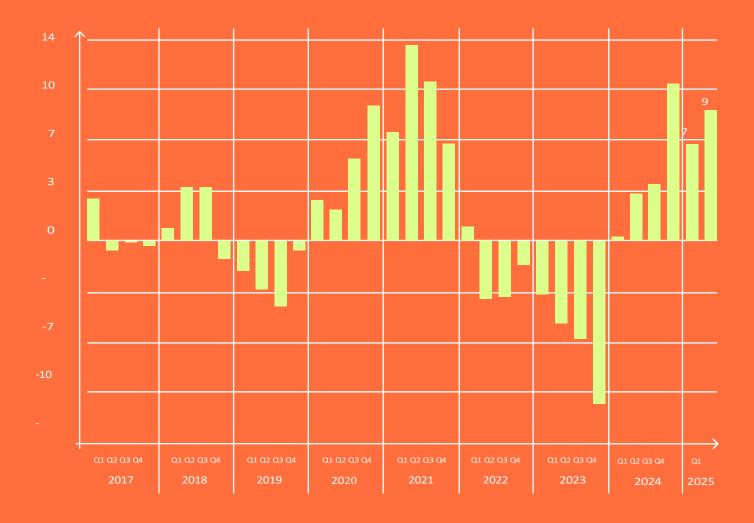
60,430

Number of active tech companies in September 2025 13

1,454

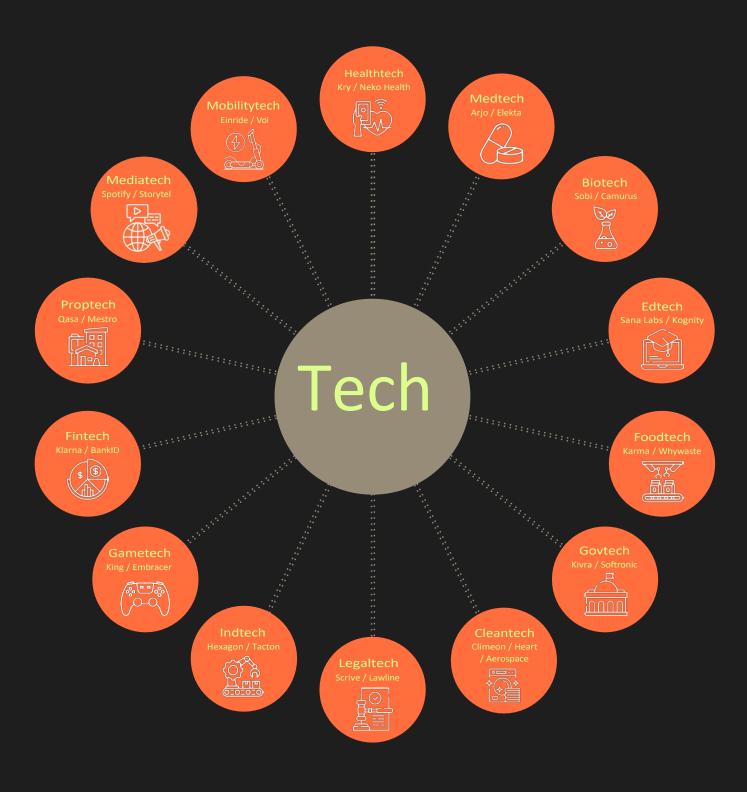
More active tech companies compared to the same month in 2024

9 of 10


Tech companies are found in the software and IT services segment.

¹² Frykstrand, S., Bertolino, M., & Sobocki, P. (2024). Deep Tech Funding Landscape in Sweden: Next Wave of Swedish Deep Tech Companies, Industrifonden

¹³ The source for all three key figures is Statistics Sweden's Business Register. A total of 60,430 tech companies were actively operating in September 2025. The tech industry is defined in these statistics as SNI 58–63.


New tech start-ups on the rise

Development in the number of new tech companies 2017–2025, on a rolling 12-month basis 14

¹⁴ Source: Growth Analysis. Refers to companies within SNI 58–63

Market clusters within tech with company examples

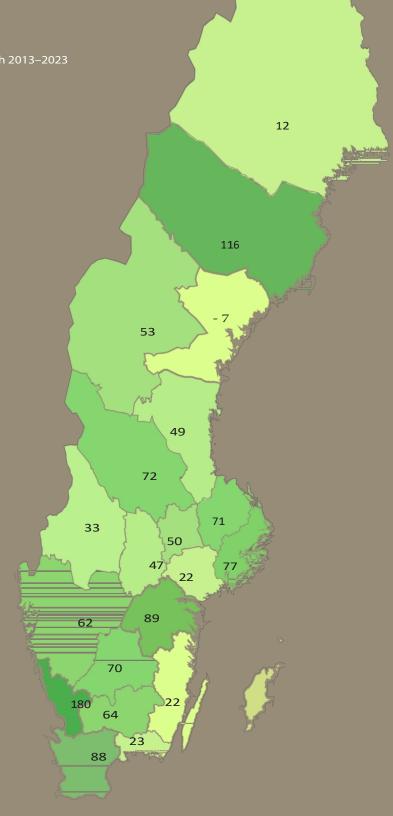
Tech creates growth from north to south

Metropolitan areas serve as natural hubs for the tech industry, with a strong pull on talent, capital, and entrepreneurs. Together, the three metropolitan counties—Stockholm, Västra Götaland, and Skåne—account for more than three-quarters of the tech industry's contribution to Swedish growth, even though only slightly more than half of the country's population lives there.

Nevertheless, three other counties top the list of where tech companies' contribution to regional growth has increased the most over the past decade.

Halland has several major employers in the tech sector. These include HMS Networks, a manufacturer of information equipment for industry, Mediq — a supplier of medical technology products and solutions to the healthcare sector — and the health tech company Phoniro. Halmstad University collaborates with

organizations such as the innovation arena High Five to promote innovation and entrepreneurship in the county.


Västerbotten is home to the consulting firm Data Ductus, the software company Vitec, and the life science company Sartorius, among others. Umeå University and the incubator Uminova Innovation play a key role in building a strong regional ecosystem, which in turn has contributed to a growing start-up scene with successful companies such as Codemill, Photon Sports, and Sift.

Östergötland is home to several well-known technology companies such as Saab, IFS, Sectra, and Cambio, operating in everything from defense and aviation to business systems, medtech, and cybersecurity. Linköping University is also located here, offering strong technical education and research.

Tech contributes to growth throughout Sweden

Added value for regional development in tech 2013–2023

County	2013–2023
Country	%
Halland	180
Västerbotten County	116
Östergötland County	89
Skåne County	88
Stockholm County	77
Dalarna County	72
Uppsala County	71
Jönköping County Kronoberg County	70 64
Västra Götaland Coun	ty 62
Jämtland County	53
Västmanland County	50
Gävleborg County	49
Örebro County	47
Värmland County	33
Blekinge County	23
Södermanland County	22
Kalmar County	22
Norrbotten County	12
Västernorrland County	v - 7

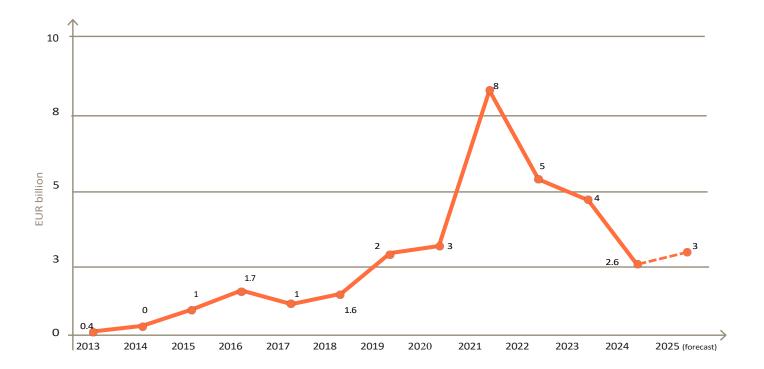
¹⁵ Refers to the development of value added at current prices within SNI 26 plus 61–63. Since last year's report, Statistics Sweden has reviewed and revised the time series in the statistics for GDP and regional value added. Unlike last year's regional comparison, a shorter time period (ten years) and a broader definition of tech that includes hardware manufacturing (SNI 26) are now used, which means that the counties' development is not directly comparable with last year's results. Data for Gotland County is not reported due to insufficient data.

Venture capital on its way back to Sweden

Various forms of venture capital are crucial for tech companies to develop and grow. Access to venture capital in Sweden increased sharply until 2021, when fastgrowing Swedish tech companies took 8.3 billion euros in venture capital.16 Since then, the amount has fallen every year, reaching 2.6 billion euros in 2024. However, the forecast for 2025 signals that the trend has reversed: venture capital is returning to Sweden after a couple of years in which international investors reduced their exposure to the country as a result of interest rate rises, high private borrowing, and a large real estate sector. Preliminary estimates indicate that the Swedish tech industry is expected to attract €3 billion in venture capital in 2025, which corresponds to an increase of 15 percent for the full year.17 By comparison, global venture capital investments in early stages declined by 12 percent during the first three quarters of the year, compared with the corresponding period in 2024.18

The recovery can be explained by falling interest rates, a renewed increase in investor risk appetite, and the Swedish krona becoming attractive in 2025 from an international perspective—especially relative to the US dollar. In addition, corporate lending by banks has begun to grow again. In February 2025, the trend finally reversed after 13 consecutive months of negative lending growth.

The largest VC investments in Swedish companies this year have been made in Klarna, the Al-driven healthtech company Neko Health, Lovable — which is developing an Albased platform where users can create apps and websites using natural language — and cleantech company Aira, which aims to replace gas and oil boilers in European homes with intelligent, sustainable heat pump solutions.


 $^{^{\}rm 16}\,$ See explanation of "venture capital" in the fact box on the next page.

¹⁷ Dealroom, September 2025.

Source: Crunchbase.

Venture capital shows signs of recovery

Venture capital investments in young Swedish companies (venture capital) 2013–2024 19

FACTS

Venture capital during the growth phase

In the start-up phase of a company's development, the owner often contributes their own money, sometimes together with informal capital from relatives and friends or so-called angel investors. During the growth phase, when the company has a developed product and has proven its business model, risk capital can be provided in the form of venture capital (VC capital) or through partnerships with more established players. In the maturity phase, when the company begins to generate reliable revenue streams, bank financing or private equity investments (PE capital) become more common.

¹⁹ Source: Dealroom and own forecast. Refers to investments in companies headquartered in Sweden.

The largest VC investments in 2025

The largest VC investments in Swedish tech companies through September 20

1. Klarna

USD 300 million

2. Neko Health

USD 260 million

3. Lovable

\$200 million

4. Aira

150 million EUR

5. Qvantum

93 million EUR

6. Legora

USD 80 million

7. Evroc

EUR 50.6 million

9. Alight

46 million EUR

8. Einride

USD 51.1 million

10. Tandem Health

USD 50 million

Tech deals with tech – and drives the digital economy of the future

Digital services and products create value for businesses and public authorities by streamlining operations, increasing operational reliability, enabling product development and innovation, and opening up new growth opportunities. Tech companies' customers are found throughout the economy, among private companies and households as well as in the public sector.

However, the single largest buyer group of digital services and products is other companies in the tech industry – by a wide margin. The tech industry can be described as a closely linked ecosystem where companies are both suppliers and customers at different stages. Tech companies trade with each other – cloud services, data analysis, Al solutions, development tools, cybersecurity services, and hardware – in a constant cycle of innovation. Since tech companies are digitally mature, innovation-driven, and often employ technically specialized

expertise, there is a constant demand for new solutions.

The tech industry's second-largest revenue stream is direct sales to Swedish households. In 2022, consumers purchased products directly from the tech industry worth SEK 85 billion. This means that Sweden's approximately five million households 21 spent an average of SEK 17,400 on broadband, mobile subscriptions, streaming services such as Spotify and Viaplay, smart home solutions such as Tibber, and consumer electronics.22

The analysis of the tech industry's largest customer segments also shows that capital-intensive sectors within infrastructure invest tens of billions of kronor annually in digital technology, as do the retail, service, and automotive industries.

²¹ According to Statistics Sweden, there were 4,883,816 households in Sweden in 2022.

²² Excluding products purchased from companies classified as retailers.

Extensive intra-industry sales

Top 10 buyers of tech industry products (domestic turnover in billions of Swedish kronor) 23

		Electricity, gas, and heating plants	Legal and financial services	Retail	Automotive industry
Other tech companies	Households 85	Wholesale trade	Technical and scientific services	Wastewater treatment and waste manageme nt	Government

²³ Source: Statistics Sweden input-output tables, national accounts, and own calculations. The data refers to 2022 and excludes exports.

Domestic companies in industries outside the top 10 list are estimated to have purchased products and services from the tech industry for approximately SEK 200 billion in 2022.

The potential for digitalization is significant in several key sectors

The proportion of added value (GDP contribution) that an industry spends on purchasing services and products from the tech industry is an indicator of its digital maturity. Airlines are the largest purchasers of tech in relation to their added value. The food industry, which also spends a relatively high proportion of its added value on tech purchases, is undergoing a digital transformation in which production, warehousing, and logistics are rapidly being automated and digitized. Private healthcare, the mining industry, and the service sector also show a high degree of tech maturity in terms of the proportion of purchases relative to added value.

At the other end of the list are public authorities, insurance companies, and agriculture, forestry, and fishing. The low ranking of insurance companies and banks can be explained by the fact that they often develop their IT solutions internally and can therefore be relatively tech-mature even though their external purchases are small in relation to the industry's value added. For many other industries, however, the low proportion of tech purchases is a clear indication that there is great potential for digitalisation.

At the same time, the tech industry's own development shows how powerful technology use and digitalization can boost productivity. Between 1993 and 2022, labor productivity in tech increased by 386 percent—almost four times in three decades—while the corresponding increase in other industries was only 70 percent.

The difference illustrates how digital technology drives efficiency and how a broader spread of tech solutions can increase productivity in other parts of the economy.24

Several strategic sectors in the Swedish economy—not least public authorities, agriculture, and the construction sector—have much to gain from increasing the pace of digitization. The Productivity Commission's final report from 2025 confirms that the public sector in Sweden lags behind comparable countries and is below the OECD average in digital development.25

Among the segments to which tech companies sell the most today, revenue growth until 2035 is expected to be greatest for retail and private households, according to the National Institute of Economic Research. This means that tech companies with a clear consumer focus have particularly good growth prospects. Growth prospects in the service sector also indicate that service companies will continue to be a key customer group for the tech industry, while the automotive industry and public sector are expected to grow at a slightly slower pace. However, the shift to electric transport, industrial 5G applications, investments in defense technology and cybersecurity, and the low level of digitization among public authorities suggest that these sectors will also continue to have a strong need for digital services and products.

²⁴ Source: Statistics Sweden National Accounts, own calculations. Cumulative development in value added per hour worked, fixed prices. The tech industry in the calculations refers to SNI codes 26 and 61–63.

²⁵ Productivity Commission, More opportunities for increased prosperity, SOU 2025:96, Ministry of Finance, Stockholm 2025.

The industries that purchase the most and least technology

Expensed purchases as a percentage of each industry's value added26

Highest share

1. Airlines	5
2. Food industry	22
3. Healthcare (private)	2
4. Mineral extraction	18
5. Legal and financial services	18
6. Automotive industry	17
7. Advertising and market research	16
8. Technical and scientific services, including architects	15
9. Wastewater treatment, waste management, and recycling	13
10. Retail	13

%

Lowest share*

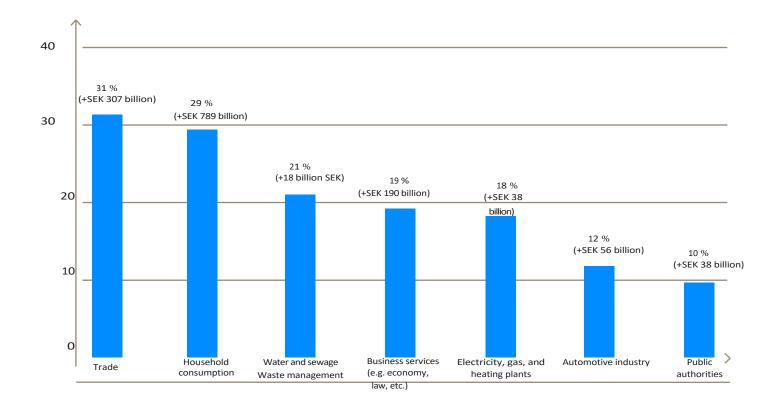
	, 6
1. Public authorities	0.2
2. Insurance companies	0.4
3. Agriculture, forestry, and fishing	1
4. Property management	2.1
5. Wood products industry	2.8
6. Land transport	2.8
7. Hotels and restaurants	3.3
8. Banks and credit institutions	3.4
9. Textile industry	3.6
10. Construction	3.7

FACTS

Tech maturity

The proportion of added value (GDP contribution) that an industry spends on purchasing services and products from the tech industry is an indicator of the industry's tech maturity. A high proportion of expensed purchases from tech companies, i.e., purchases that are consumed during the same financial year, indicates that tech solutions are a central part of production. The measure provides an indication of how far an industry has come in terms of utilizing external (but not proprietary) technology to drive growth, create efficiency gains, increase operational reliability, and accelerate the pace of innovation.

%


*Public authorities, banks, and insurance companies often develop their IT solutions internally and may therefore have relatively high technology development costs, even if their external tech purchases are small in relation to the value added. The purchase share also refers to direct purchases from Swedish companies within SNI codes 26 and 61–63. The statistics do not capture technology imports or indirect purchases, for example, to the extent that the Swedish Armed Forces (within the category "public authorities") purchase technology from companies with subcontractors in the tech industry, while the supplier is classified outside the aforementioned SNI codes. Defense expansion in Sweden mainly leads to tech purchases being recorded as investments, while the cost share of public authorities' added value (as reported in the table) is mainly affected in the longer term.

²⁶ Source: Statistics Sweden input-output tables, National Accounts, and own calculations. Refers to the year 2022. The lists exclude buyer segments within the tech industry.

"Several strategic sectors in the Swedish economy – not least public authorities, agriculture, and the construction sector – have much to gain from increasing the pace of digitization."

Outlook for the largest buyer segments of tech

The National Institute of Economic Research's forecast growth for 2025–2035 among major buyers of tech industry products, in percentage terms and in billions of Swedish kronor 27

²⁷ For the sectors, this refers to growth in gross production at constant prices (excluding price increases). The trade category includes wholesale trade, retail trade, and car trade.

The healthcare of the future requires the Al of the future

How do you view developments in your part of the tech sector right now – what trends or factors will have the greatest impact on your growth in the coming years?

"Healthcare costs are rising every year, and we have a shortage of doctors and nurses in every country. At the same time, our aging population means that the challenges will only grow. If nothing is done to significantly improve this situation, healthcare will not be able to maintain the same quality in the coming years. We see that AI has the potential to enable the improvements that are needed. An important part of the solution is medical AI assistants like the ones we are developing at Tandem, for which we are seeing explosive growth in interest in all of the 10+countries where we already operate."

Which technology areas are you prioritizing in your future investments, and what is driving these choices?

"We are currently focusing on moving from an administrative AI assistant in healthcare to a complete medical AI assistant that supports healthcare staff with everything they need in their daily work. A critical part of

This is how to develop clinically safe AI products that not only reduce the administrative burden, but also improve the quality of care. For example, helping healthcare staff follow the right treatment guidelines, quickly perform all follow-up tasks after a patient visit, and present the right information from the patient's medical history before the visit.

How do developments in international trade and geopolitics affect your opportunities to grow in global markets?

Developments in AI regulation affect our global growth opportunities in several ways. Healthcare is still very local, which requires us to adapt to different national regulations. At the same time, regulations were often written long before today's AI models existed, and new regulations such as the EU AI Act mean that new questions are being raised by the 1,000+ healthcare providers we currently work with. We address this by building technology that is ready for regulatory compliance from the outset. The growing demand for reliable and ethical technology benefits players with a long-term perspective and trust – and will become an important competitive advantage going forward."

Chapter 2

The people in the tech industry

This chapter focuses on the people in the tech industry. We highlight:

- How the industry is developing from an employment perspective.
- How redundancies affect companies and the labor market.
- How developments differ between regions and which municipality is Sweden's most tech-dense.

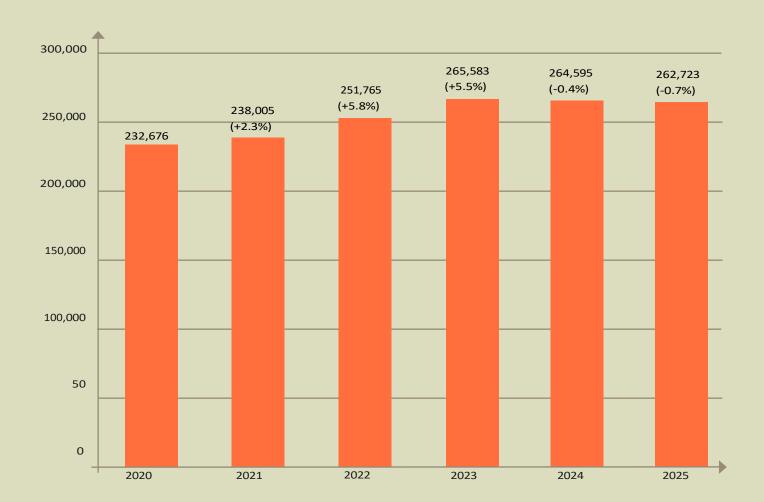
30,000 more jobs in tech since 2020

Since the pandemic year of 2020, the number of people employed in the Swedish tech industry has increased by over 30,000 – a rise of 13 percent. During this period, the number of jobs in the tech industry grew 2.5 times faster than in other parts of the economy.

During the second quarter of 2025, the tech sector employed approximately 263,000 people. This represents a decrease of 0.7 percent—approximately 2,000 people—compared to the same period in 2024. The decline is an effect of the prolonged economic downturn, which has resulted in a shift in focus from growth to profitability among companies. Customers' willingness to invest has been subdued, and IT budgets have been squeezed by price increases and higher security costs. Overall, this has slowed the pace of recruitment, and many companies have chosen to wait and see and focus on cost control.

There are signs of improvement, but the labor market tends to lag behind other indicators during an economic recovery. In August 2025, the total number of job vacancies at the Swedish Public Employment Service was 4% lower than in the corresponding period in 2024, while the decline in the IT sector amounted to 8%. Finding the right skills, however, is a growing challenge for tech companies. In the Swedish Agency for Economic and Regional Growth's latest

surveys, nearly one-third of all Swedish companies state that the lack of skills and qualified labor is a serious obstacle to growth.28


The rapid development of AI is sometimes described as a threat to employment, particularly in the tech sector. However, the moderate decline in employment compared with 2024 is mainly linked to macroeconomic uncertainty, geopolitical risks, and a natural slowdown following the digitalization boom during the pandemic, rather than to AI. However, it is impossible to predict what the long-term effects of AI will be on employment, and different occupations are likely to be affected to varying degrees. Research and analyses in recent years indicate that the technology mainly changes and complements work tasks rather than replacing entire professions. An OECD study from 2021 showed that there is no evidence that AI will reduce overall employment.29 The use of AI contributes to higher productivity and more efficient processes, which in the long term can create new business opportunities and strengthen the competitiveness of tech companies - and thereby create more high-quality jobs. Companies' needs for different types of skills will change as AI is implemented in more and more areas.

 $^{^{\}mbox{\tiny 28}}$ Swedish Agency for Economic and Regional Growth, 2023.

²⁹ OECD, 2021.

Slightly fewer people employed in tech compared to 2024

Number of people employed in the tech industry in 2020–2025 and development compared with the previous year 30

³⁰ Source: Statistics Sweden. Population's labor market status. Refers to those employed during the second quarter.

The number of layoffs is falling from high levels

In recent years, the Swedish labor market has been characterized by weak growth, with rising unemployment reaching 8.7 percent in September 2025.31 Since 2024, the tech industry has followed this trend and found itself in a slowdown phase with some staff reductions.

In 2025, however, the number of layoffs has decreased and several indicators point to the tech labor market stabilizing. Many tech companies have already implemented the costsaving organizational changes that began in recent years. The capital market is now showing signs of recovery, and from a macroeconomic perspective, the focus has shifted from combating inflation to stimulating growth and employment—including through interest rate cuts.

Despite the decline in redundancy notices, the level is still around 25 percent above the historical average for the past decade. The geographical concentration is striking: in 2024, Stockholm County accounted for a full 85 percent of all layoff notices in the tech sector, underscoring the region's central role in the Swedish tech ecosystem. The Gothenburg region has also experienced layoff notices in recent times, linked in part to cutbacks at Volvo Cars announced in the spring of 2025.

However, it is important to note that redundancy notices do not always lead to actual layoffs, as companies often manage to find internal solutions to problems with temporary overcapacity. This became clear in 2020 and 2021, when many redundancy notices were withdrawn as demand quickly recovered after the first phase of the pandemic.

³¹ Source: SCB AKU, seasonally adjusted and smoothed figures.

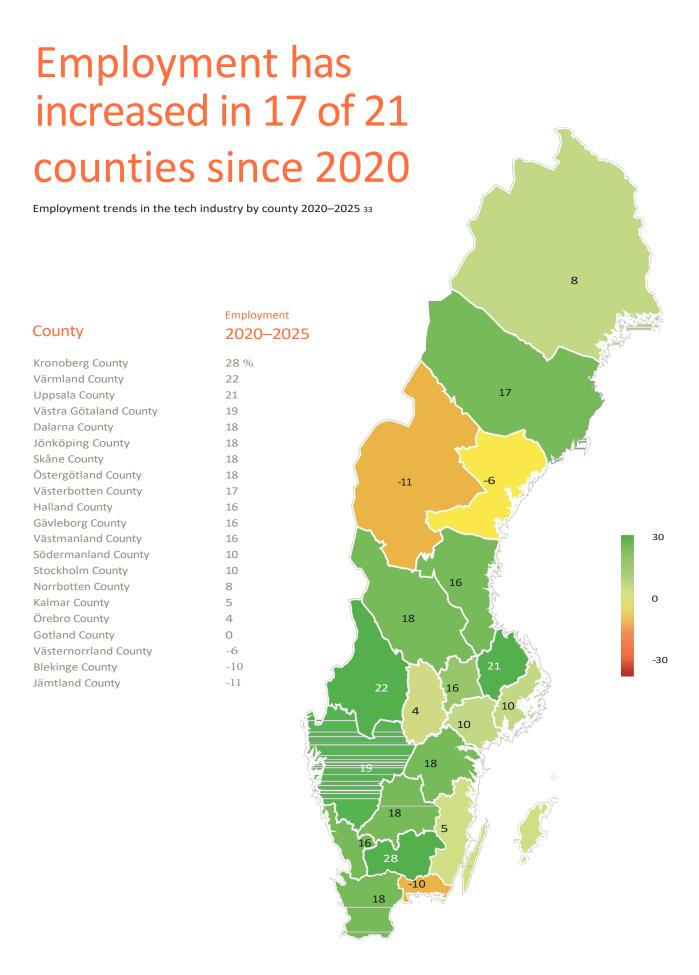
The peak of redundancies during the recession has passed

Number of people affected by redundancy notices in tech 32

³² Source: Swedish Public Employment Service. Refers to SNI 58–63, rolling 12 months.

Solna is Sweden's most tech-intensive municipality

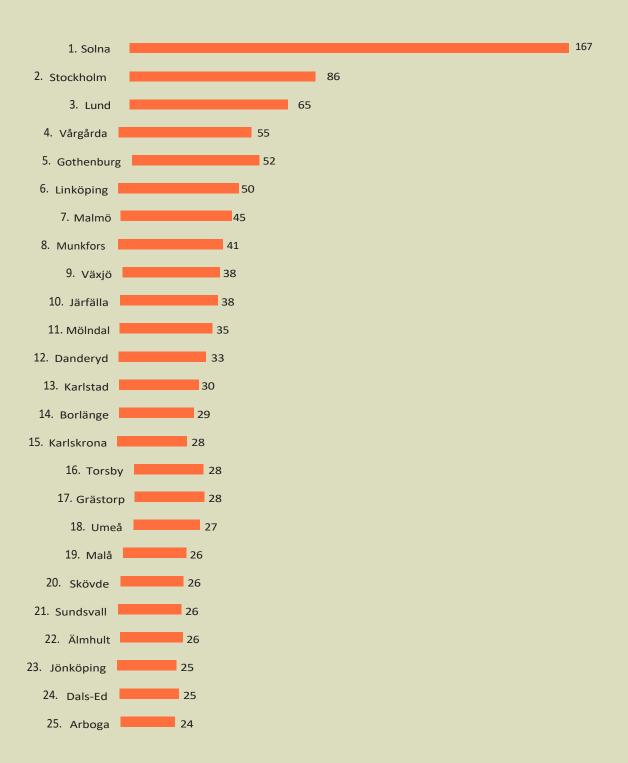
Over the past five years, the tech industry has contributed a large number of new jobs throughout the country. Since 2020, employment in tech has increased in 17 of 21 counties. However, the economic downturn temporarily broke this positive trend in 2024–2025, when 17 of 21 counties instead saw a decline in the number of jobs in tech.


Among the country's most tech-dense municipalities, Solna stands out, with 167 people employed in tech per 1,000 inhabitants. The municipality has a strong cluster of tech and IT service companies around Arenastaden and Solna Business Park, with major employers such as CGI: Tietoevry, CGI, Telia, and Siemens. This creates an unusually high concentration of skilled jobs in tech.

The municipalities in the metropolitan regions of Stockholm, Gothenburg, and Malmö, as well as the university cities of Lund and Linköping, unsurprisingly rank high on the list. These municipalities have access to

specialized expertise, research, and strong innovation environments, which are driving continued growth in IT consulting services, software development, and the digitization of both the business sector and the public sector.

At the same time, tech hubs have emerged outside the major metropolitan areas. Regional centers such as Karlstad, Borlänge, Umeå, Sundsvall, and Jönköping have established themselves as important hubs for digital development.


Even smaller municipalities are making their mark on Sweden's tech map. Vårgårda and Munkfors are examples of how individual technology-intensive employers can have a major impact on the local labor market. In Vårgårda, Magna Electronics is developing the vehicle technology of the future, and in Munkfors, there is the electronics manufacturer Inission. Even smaller towns can build competitive technology clusters — provided that the infrastructure is in place, the business community cooperates, and the supply of skills works in the long term.

³³ Source: Statistics Sweden, Population's labor market status. Changes refer to the second quarter of each year.

Sweden's most tech-intensive municipalities in 2025

Number of jobs in the tech industry in the municipality per 1,000 inhabitants 34

³⁴ Source: Statistics Sweden, Labor market status of the population, population statistics, and own calculations.

Chapter 3

Technology, geopolitics, and international trade – how does Swedish tech fare in a new geopolitical landscape?

This chapter analyzes Sweden's role in international tech trade during a period marked by growing geopolitical tensions and bloc formation in the global economy. We highlight:

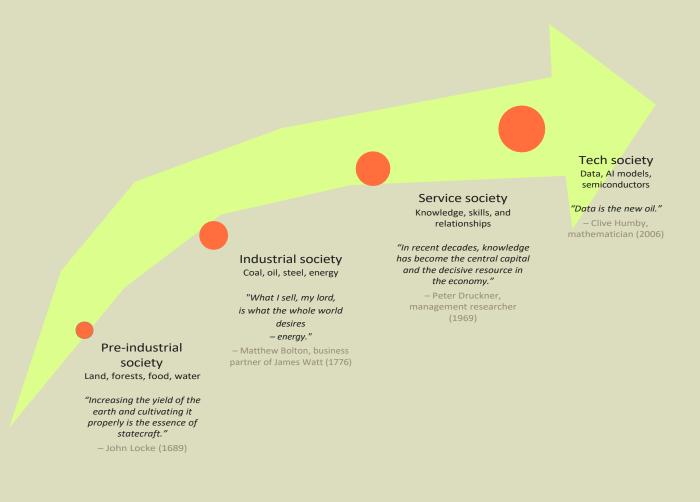
- The position, competitiveness, and future prospects of Swedish tech exports.
- How relations between the major economic blocs the US, China, and Europe – affect trade, investment, and access to critical resources.
- The emerging trade barriers that shape the conditions for Swedish tech in the global ecosystem.

The shifting power base of geopolitics – from land to data

Throughout history, the strategic center of gravity of the economy has shifted in step with technological advances. In pre-industrial society, prosperity rested largely on control of natural resources such as land, forests, food, and water. Industrialization shifted the power base toward energy and raw materials such as coal, oil, and steel. Countries with abundant access to energy and fossil fuels gained considerable influence over the rules of the global economy. In the emerging service society, knowledge, skills, and relationships became the new strategic resources — an economy where value is created not primarily by manufacturing things, but by turning knowledge into action and building relationships.

Today's society is a tech society. Geopolitical issues often revolve around access to data, intangible assets, and electronic components.

For example, Taiwan has become a key global player in the world economy through its dominance in advanced semiconductor production. Greenland is attracting attention due to, among other things, its deposits of rare earth elements, which are essential for electronics and batteries.


for electronics and batteries. Within the EU, initiatives such as the European Chips Act and the Critical Raw Materials Act are being launched with the aim of increasing the Union's "strategic autonomy" and reducing dependence on Chinese and Russian supply chains.

Trade and investment are generally the most effective ways for countries to secure access to critical resources. However, in a tense security policy situation, confidence in the market as a guarantee of supply is weakened. Dependence on other states is interpreted as a strategic risk, and policy is shifting towards greater national control. Self-sufficiency is becoming increasingly popular politically, even though it is often costly and socio-economically inefficient. When domestic production is not realistic, countries seek to secure trade relations with political partners or invest abroad to gain access to critical assets. In a situation of high rivalry, even these mechanisms can be perceived as insufficient, increasing the risk of political or territorial conflicts.

"Today's society is a tech society. Geopolitical issues often revolve around access to data, intellectual property, and electronic components."

From soil to data – the emergence of the tech society and shifts in strategic resources

Historical stages of development with examples of strategic resources in each stage (raw materials, assets, or infrastructure that are critical to countries' economies, security, and societal functions)

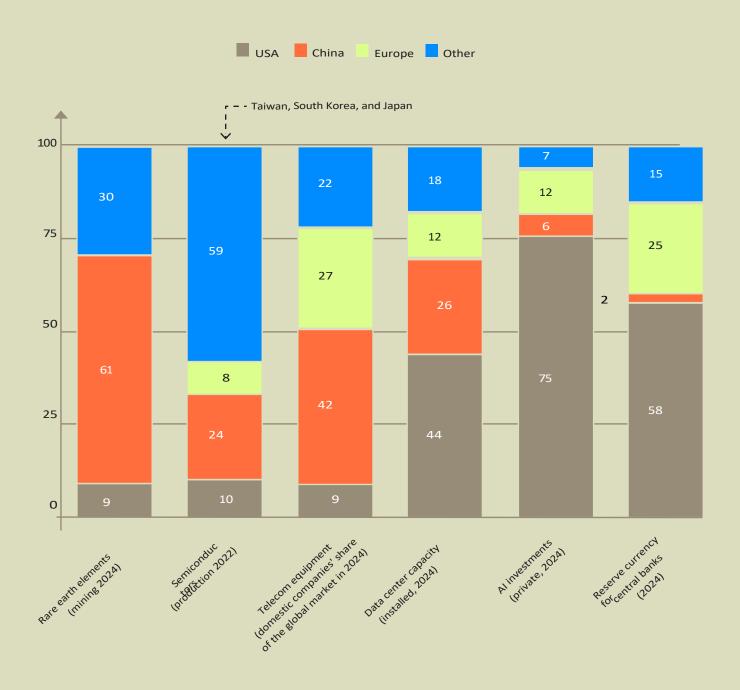
Tug of war over strategic resources as the global economy divides into blocs

In 2025, polarization in the global economy has intensified, with the trade conflict between the US and China taking center stage alongside security policy developments in Ukraine and the Middle East. Protectionist measures and countermeasures by the major powers have followed one another in quick succession, with increased tariffs and new export restrictions.

The global balance of power in the tech trade has become increasingly clear: two major geopolitical blocs – the US and China – dominate the most strategic parts of the value chain, while Europe lags behind. China has built its position of strength on a material basis, through control of rare earth metals, large parts of the semiconductor supply chain, and highly efficient high-tech production capacity, making it the undisputed industrial and hardware power. The US dominates in data, innovation, and financial capacity. With three-quarters of the world's private Al investments, almost half of global data center capacity, and the dollar's status as a reserve currency in central banks, the US has a position that is difficult to challenge at this point.

In this context, Europe appears to be a distant middle player. Europe has industrial expertise and regulatory capacity, but it lacks the central technology development, venture capital, and critical raw materials needed to compete with the two superpowers. The EU's strategy has

has been to regulate rather than compete – to try to create predictability and ethical frameworks in a world where others are driving technological development.


At the same time, Sweden and the Nordic region have shown in several areas that competition with American and Chinese players is possible, especially higher up in the digital value chain. Swedish companies such as Spotify fy, Klarna, and a long list of unicorns have succeeded in building globally recognized platforms in software and digital services.35 On the infrastructure side, Ericsson and Nokia stand as European counterweights to Asian giants in telecommunications. Sweden also has a strategic asset base in terms of access to critical metals, with deposits of rare earth elements, among other things, but production has so far been limited by complex permitting processes, resistance to new mining establishments, and competition from cheaper extraction in China.

For Swedish tech companies, the geopolitical tug-of-war over resources presents both risks and opportunities. The market for advanced digital infrastructure and AI is increasingly governed by American and Chinese standards. Swedish companies are sometimes faced with the choice of strategically choosing sides in partnerships, acting as quick followers to foreign competitors, or positioning themselves as diplomatic bridge builders between the blocs.

³⁵ Unicorn is a term used to describe unlisted start-up companies with a valuation of over one billion US dollars.

From raw materials to data power

Share of global control per economic bloc 36

³⁶ Telecom equipment includes broadband access, microwave and optical transmission, mobile network cores and radio access networks (RAN), as well as routers and switches for network operators. Semiconductors refer to wafer production, the manufacture of silicon wafers that form the basis of microchips and are therefore used as an indicator of the scale of semiconductor production. Reserve currencies for Europe include the euro, the British pound, and the Swiss franc, while the Japanese yen is the largest currency for the "rest of the world." Sources: IAE (rare earth elements, data center capacity), US Department of Commerce, SEMI, Boston Consulting Group (semiconductors), Dell'Oro Group (telecom equipment), Stanford AI Index report (AI investments), and IMF (reserve currencies).

"The EU is trying to regulate competitiveness, but it doesn't work."

Swedish and European competitiveness depend on openness, an attractive investment climate, and the ability to build trust across borders. Fredrik Erixon, director of the ECIPE think tank in Brussels, sees a European tech sector that is strong in many trade flows but increasingly pressured by regulatory and geopolitical forces.

Sweden's strength: the digital transformation of industry

Erixon believes that Sweden's strength lies in its combination of traditional industry and digitalisation expertise. Swedish companies such as Volvo, Scania and Ericsson have gradually shifted their focus from hardware to building business models around data and services. At the same time, there is a lack of a broad range of new companies in areas such as Al and deep tech, which he believes makes the Swedish sector less resilient to rapid technological change.

"Sweden has a very strong tech trade, but much of it has grown out of other industries – from manufacturing, telecoms and finance to data-intensive services. We have been good at gradually increasing technology intensity rather than building a pure tech sector."

Transatlantic balancing act

According to Erixon, the relationship between the EU and the US is becoming increasingly complex, with both cooperation and conflicts on the rise. Data transfers, export restrictions, and differing views on digital regulations are creating tensions that directly affect Swedish tech companies.

"With a more confrontational US policy, European companies risk being pressured to localize investments in the US in order to participate in the same ecosystem."

Erixon is well respected in EU corridors, but is sometimes considered difficult because he often calls for self-reflection within the union. Although he identifies clear European problems linked to both the US's increasingly protectionist line and China's state aid strategy, he usually shifts the focus back to domestic needs. recruit from each other. In Ohio, on the other hand, the players were less aware of each other and did not always see themselves as part of the same industry or technology area."

Regulation has become the new trade barrier

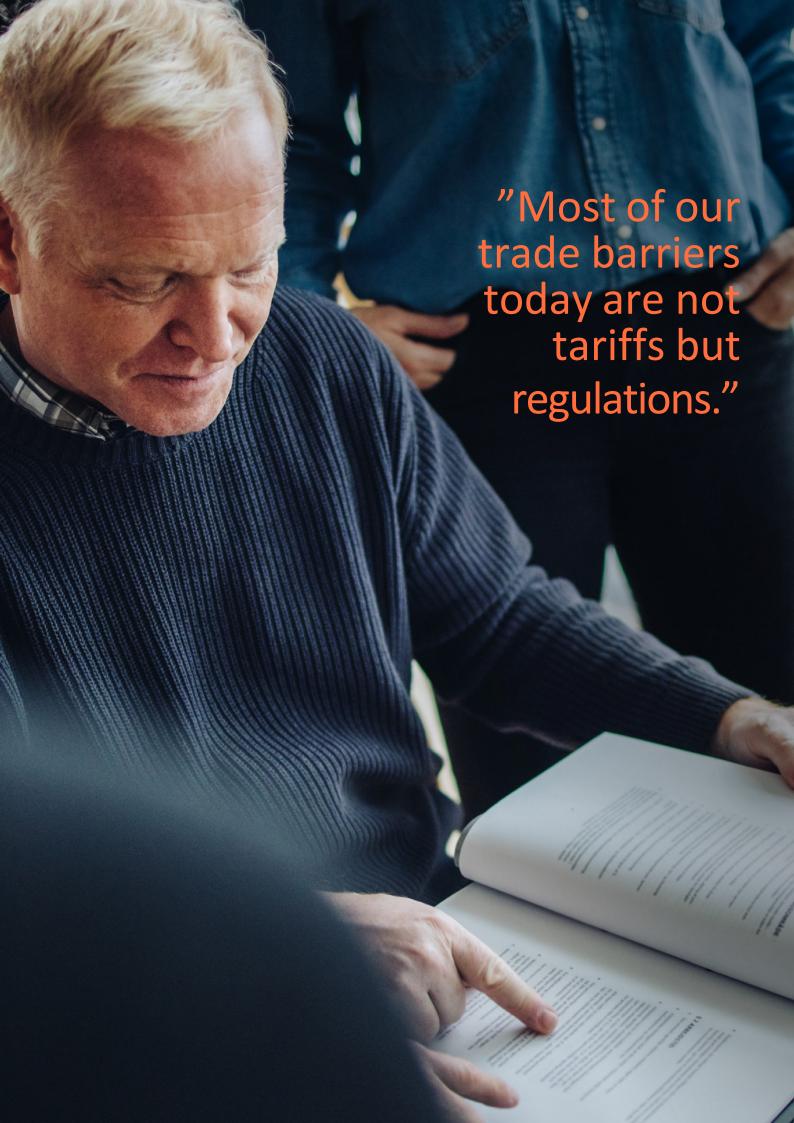
Erixon describes how the EU's rapidly growing regulatory framework is often detached from a clear industrial strategy. In the worst case, this leads to data connections being broken, research environments being weakened, and companies moving their investments elsewhere. He also sees a cultural divide between Europe and the US: in the EU, a defensive view of new technology is combined with a desire to preserve existing industrial structures, creating a "cumbersome regulatory portfolio":

"Most of our trade barriers today are not tariffs but regulations. The AI Act, GDPR, investment tests, and digital taxes are part of an integrated apparatus whose consequences few understand. Europe is trying to regulate its competitiveness, but it's not working."

With sovereignty and autonomy as buzzwords

Security policy realities can exacerbate the risks posed by regulations that hamper Europe's internal competitiveness. Erixon warns against a far-reaching political fixation on breaking dependencies on China, as such a decoupling is not considered economically feasible without enormous costs. He also believes that certain buzzwords – contrary to the fundamental principles of the internal market – are being used to legitimise national support or regulations that favour special interests.

"Concepts such as 'strategic autonomy' or 'technological sovereignty' are unfounded political narratives rather than strategies. No one really knows what they mean, and they mean different things in different countries."

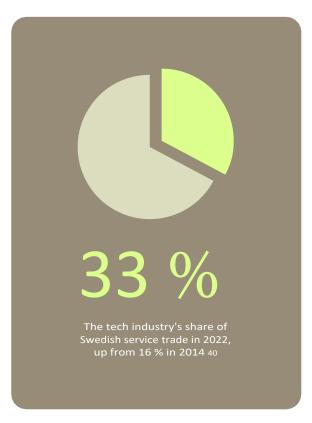

According to Erixon, achieving true autonomy requires Europe to build a strong internal innovation environment and attractive conditions for companies to grow—not more regulations or government-led projects. He cites the EU's Chips Act as an example, which codifies the goal that the EU should account for 20 percent of global semiconductor production by 2030.

"The Chips Act was a fantasy even when it was created. You only need to read it to understand that it won't work. Money comes when there are interesting things to invest in – not the other way around."

Sweden's role: open, predictable, and with energy as the key

Erixon thus expresses suspicion of centralized attempts to create self-sufficiency in technology in designated economic segments. Instead, he believes that the EU should focus on well-functioning capital markets, research, and human capital development. Long-term competitiveness and innovation, he argues, grow out of environments that attract investment—not out of politically formulated sectoral goals.

"The most important thing Sweden can do is to continue to create favorable local conditions for investment and research. The single most important measure is probably to secure the energy supply. There is no point in talking about digitalization, data centers, or electricity-intensive industry if we do not have a stable and competitive electricity supply. That is where it all starts—without it, investments will not come here," concludes Fredrik Erixon.

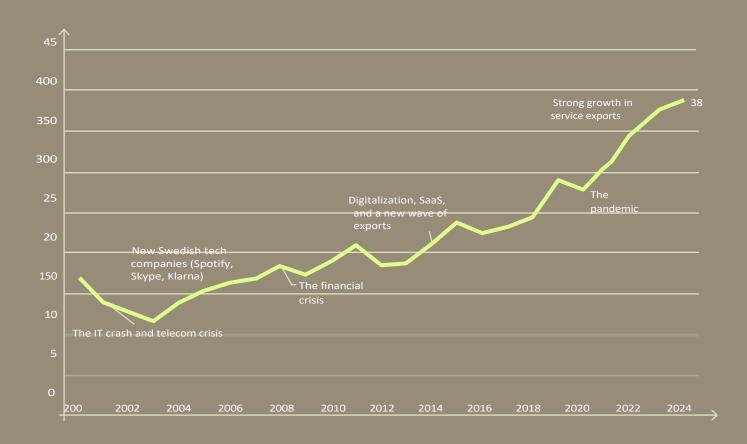


Swedish tech companies expands selectively in turbulent times

For Swedish tech companies, the turbulence in global trade means that it is becoming increasingly complex to navigate. In 2025, uncertainty has increased and IT budgets are being reprioritized—both in terms of size and area of use—with security and licensing costs taking on greater importance.

Swedish tech companies are now expanding more selectively in the turbulent economic environment. Swedish tech exports amounted to SEK 387 billion in 2024, which corresponded to 11 percent of total Swedish exports.³⁷ From a historical perspective, this represents a moderate increase of SEK 13 billion, or 3.4 percent, compared with 2023.

About two-thirds of the Swedish tech industry's exports consist of services. According to Statistics Sweden, companies in the tech industry accounted for one-third of Sweden's total trade in services in 2022 – a doubling of the industry's share in eight years. This also means that the tech industry today is about twice as important to Sweden's trade in services with the rest of the world as traditional industry.38



³⁷ Last year's report stated that tech exports accounted for 12 percent of total exports. However, this figure was based on preliminary data for total exports, which has since been revised significantly upwards by Statistics Sweden. The adjusted share for 2023 – based on the final foreign trade figures – is 11 percent, which is the same as for 2024. The share for 2024 is based on preliminary data.

³⁸ Source: Eurostat (STEC) according to Statistics Sweden, SCB (2025). Sweden's economy – Statistical perspective, issue 6 2025: Economy slowed down in the first quarter of 2025. Large and foreign-owned companies dominate Swedish trade in services, Stockholm: SCB. In this context, the tech industry refers to SNI 58–63.

Swedish tech exports approaching SEK 400 billion

Exports of tech products (both goods and services). 2000–2024 in SEK billion 39

³⁹ Refers to current prices. Source: Statistics Sweden Foreign Trade Statistics

"Most of the value exported from the Swedish tech industry industry – 57 percent – consists of data services."

Data flows are the lifeblood of the tech trade

Globalization, digitization, and service development have challenged the traditional image of international trade in the 21st century. While digital service sales are fast-growing and highly mobile, global trade in goods has slowed since the 2008 financial crisis. Intangible and digital values have become increasingly important for growth. According to the World Economic Forum, 70 percent of the value created in the global economy over the next decade will be based on digitally enabled, platform-based business models.41

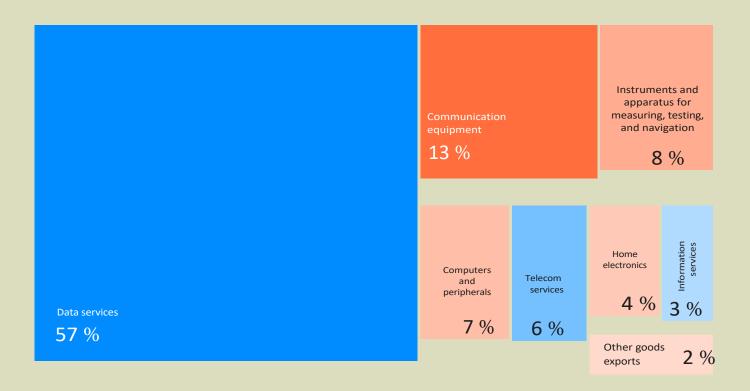
Most of the value exported from the Swedish tech industry—57 percent—consists of data services, which include software licenses, SaaS services, and IT consulting services.

Swedish tech companies exporting within this category

include Spotify, Klarna, Tie-toevry, and Sinch. Unlike traditional goods trading, which is based on collective deliveries at predetermined times, data services are usually based on continuous real-time flows where value is created and transferred every second – for example, when Scania collects vehicle data, Spotify streams music, or Klarna processes payments in real time.

The dominance of data services in the export mix becomes clear when compared to the second largest export category – communications equipment – which accounts for one-eighth of tech exports.

This includes, for example, network equipment, base stations, and fiber optics, not least through Ericsson's physical exports.


 $^{^{\}mbox{\tiny 40}}$ Source: Eurostat, SEC according to SCB (2025). See previous footnote.

⁴¹ World Economic Forum (2023). Digital Transition Framework: An Action Plan for Public-Private Collaboration. Geneva: World Economic Forum.

Data services account for the majority of tech exports

Composition of Swedish tech exports, where goods = red/orange, services = blue 42

⁴² Source: Statistics Sweden, foreign trade statistics.

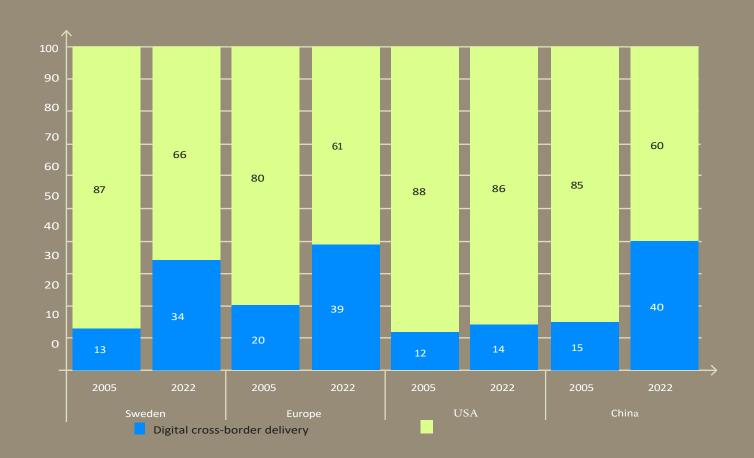
⁴³ World Economic Forum (2023). Digital Transition Framework: An Action Plan for Public-Private Collaboration. Geneva: World Economic Forum.

Digital direct deliveries on the rise in China and Europe

Tech services are mainly exported in two ways: either the service is delivered digitally and crosses national borders directly to the customer, or the export takes place through the company establishing a physical presence abroad via subsidiaries that deliver local services. 44

The share of tech exports of services that are delivered digitally across borders has increased significantly in the 21st century. Sweden – with a share of 34 percent – and Europe (39 percent) are following this trend toward increasingly cross-border digital trade, while US exports (14 percent) continue to be dominated by sales via local subsidiaries – not least through the extensive foreign establishments of large tech companies. China, on the other hand, has gone from a low to a very high share of direct digital exports, reflecting the country's rapid digitalization.

Large companies play a major role in Swedish exports of data services, due to their structure as international groups. The parent company in Sweden tends to control the early stages of the value chain – including research and development,

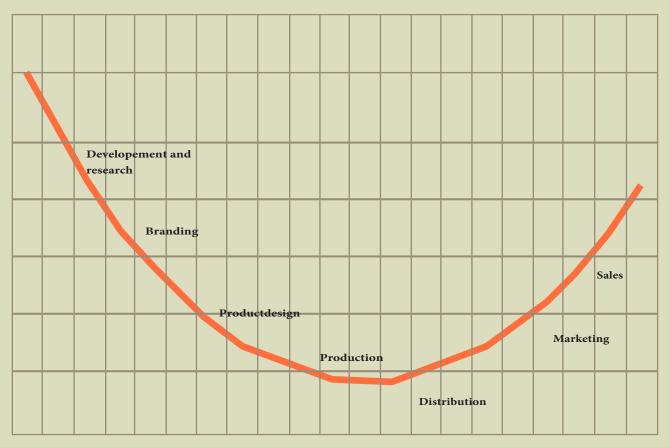

brands, and product design—as well as the later stages (marketing and sales). At the same time, intermediate stages such as production, support, and logistics often take place elsewhere in the world. This pattern is sometimes illustrated by the so-called Smile Curve, which shows how the high-value-added parts of the business are concentrated at the head office in the home market, thereby generating high export values. The globalization of corporate flows also has consequences for the labor market, where domestic demand is increasingly shifting toward highly specialized skills.

The growing share of digital cross-border deliveries means that an increasing proportion of trade takes place without a physical presence in the recipient country. This means that national rules for data flows, cloud services, and cybersecurity have a direct impact on Swedish exports. At the political level, this development means that issues relating to data sharing, international tax rules, and trade agreements need to be given the same weight as more traditional export issues, as digital openness has in practice become a prerequisite for continued growth.

⁴⁴ There are two other ways of exporting services. Firstly, workers from the exporting country may be temporarily stationed abroad on assignment without the company having a commercial presence there. Secondly, foreign citizens may be visiting the exporting country (for tourism or business purposes) and purchase products while traveling. However, these two export phenomena are insignificant in percentage terms in the case of tech exports.

Service exports are becoming increasingly digital

Share of tech exports of services delivered digitally and cross-border, and via local subsidiaries, 2005 and 2022 $_{
m 45}$


⁴⁵ Source: WTO estimates.

Value creation in global tech companies follows the "smile curve"

The greatest added value occurs in the early and late stages of the value chain – in innovation, development, the creation of intangible assets, and customer relations, rather than in ongoing production and logistics.

Addition to value added (y)

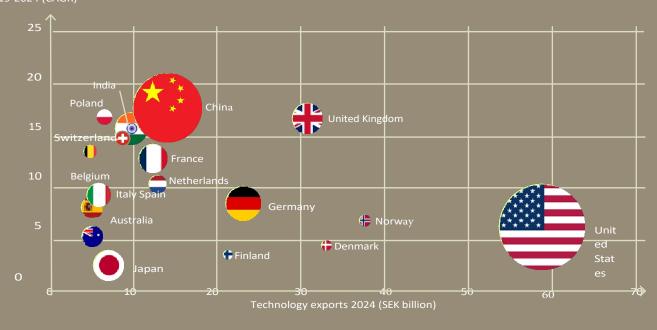
Point in the value chain (x)

Fastest export growth in Asia, Poland, and the United Kingdom

Exports of tech products are more global than Swedish foreign trade in general. Most tech exports—57 percent—go to countries outside the EU. For service-oriented tech companies, geographical proximity to the market is less crucial than for traditional industry.

The US is the tech industry's single largest export market, with an export value of SEK 59 billion in 2024. Despite recent tensions in transatlantic relations, the US, with its breadth and expertise in areas such as SaaS, cloud services, and AI, remains a large and important destination for Swedish tech companies. However, the Trump administration's confrontational stance on trade relations has increased pressure on Swedish companies to invest and create jobs in the US in order to export their products.

To ensure increased growth in tech, Swedish export strategies need to balance established markets with proactive investments in fast-growing regions. Much of the growth in Swedish tech exports is currently driven by dynamic markets such as India, China, and Poland, which have shown impressive average annual growth of over 15 percent over the past five years—a sign of rapid expansion and strong future potential.


Sweden's Nordic neighbors, as well as the UK and Germany, also represent significant export volumes. Exports to the UK in particular have increased sharply since Brexit. Despite macroeconomic and political turbulence, the British market is home to Europe's largest start-up scene, a deep capital market, strong clusters in fintech and cleantech, among other areas, and a liberal attitude to AI and data flows.

"In 2024, 57 percent of tech exports went to countries outside the EU."

Largest exports to the US, but other markets are growing faster

Flag size = market size in GDP 2024 46

Average annual growth 2019-2024 (CAGR)

⁴⁶ Source: Statistics Sweden, IMF.

"Global tech trade is moving towards a development characterized by increasingly numerous and severe trade barriers."

More technical barriers are putting pressure on tech trade

Global tech trade is moving towards a development characterized by increasing and sharper trade barriers. Export restrictions, local data storage requirements, national standardization, digital taxes, goods tariffs, and background checks on investments are creating an increasingly complex operational landscape for tech companies.

Companies may need to create several different versions of the same product and invest in market adaptation for regulatory reasons alone. This means that economies of scale are lost, as uniform solutions become difficult or impossible to sell without local modifications. Costs increase, risk premiums for investors rise, and profit margins are squeezed. In the worst case, companies can lose access to important markets.

When countries introduce their own technical standards, impose security screening requirements, require local production, or favor domestic suppliers, costs increase and the risk of lost business rises. The Financial Times reports, for example, that Ericsson and Nokia's

bids in China are being hampered by lengthy and unpredictable security checks — so-called "black box" reviews that delay contract processes.47 For Ericsson and Nokia, such delays and uncertainty mean that customer decisions are postponed and competitiveness is impaired — especially if local players are not subject to the same requirements. This risks shrinking sales and margins in a strategically important market.

Technical barriers to trade are often justified by objectives such as national security, consumer protection, or the environment, but can cause major problems when they become complex, discriminatory, or disproportionate. According to an analysis by ECIPE, there are significant gains to be made from reducing technical barriers to trade. A 10% increase in the overall impact of technical barriers to trade in services and the use of digital technology is associated with a 1.3% reduction in the economy's value added.

⁴⁷ McMorrow, R. & Smith, K. Financial Times. "China curbs use of Nokia and Ericsson in telecoms networks," October 2, 2025.

⁴⁸ Ghodsi, Impact of Technical Barriers to Trade on the Trade in Goods in the Information and Communications Technology Sector: Differentiating by Aim of the Regulatory Measure, Working Paper 208, The Vienna Institute for International Economic Studies, September 2021.

⁴⁹ Guinea, O. et al. (2025). Breaking Barriers, Boosting Growth: Unlocking the Power of Digital Technology for Europe's Competitiveness, ECIPE Policy Brief No. 14/2025, Brussels: European Centre for International Political Economy (ECIPE).

Examples of trade barriers for Swedish tech companies and their effects

Export controls and sanctions

- Effect: Lost access to growth markets, need for product adaptation or alternative suppliers
- Example: US export restrictions can make it difficult for Swedish tech companies to sell to Chinese customers.

Data localization requirements

- effect: Higher operating costs, reduced scalability, more difficult data analysis
- Example: Restrictions on the transfer and storage of user data affect Spotify in India, for example. Localization requirements for data

Digital taxes

- Impact: Reduced profitability, more difficult to compete with local players
- Example: The OECD's proposal for a global digital tax, national digital taxes in France and Italy, for example.

Background checks on direct investments in critical technology

- Effect: More difficult capital raising, lower valuations, poorer expansion opportunities
- Example: Expanding Swedish AI companies such as Lovable may be forced to undergo background checks.

Tariffs

- Effect: More expensive inputs, reduced competitiveness, more difficult to plan investments.
- Example: EU tariffs on Chinese steel affect Swedish exporters of tech equipment.

"Critical technology such as digital infrastructure is currently at the center of geopolitical developments."

How do you view developments in your part of the tech sector right now – what trends or factors will have the greatest impact on your growth in the coming years?

After a period of rolling out 5G networks, we are now seeing end users begin to embrace the new opportunities that 5G can offer. In addition to 5G networks delivering high capacity and offering good quality for consumer users, we see that differentiated connectivity – that is, the ability to adapt the network to guarantee a certain level of performance for different services and users, primarily in areas that can be considered business and society-critical – is an area where new possibilities with 5G will be realized. This could be

robustness and predictability in connectivity that enables new applications in critical areas such as emergency services and defense, or better uplink capacity that can enable, for example, video connectivity, or positioning functionality that complements GPS and, in some cases, offers the possibility of positioning indoors.

We also see that the connected AI glasses coming onto the market require a lot from the networks in order to function well. This could potentially change how we use connectivity to create value in ways that we are only beginning to understand. In addition to differentiated connectivity, we also see a great opportunity to provide access to 5G networks through open APIs that enable the use of differentiated connectivity on a global scale.

"We are fully focused on supporting our customers in addressing their markets with 5fi in the best possible way."

Which technology areas are you prioritizing in your future investments, and what is driving these choices?

We are fully focused on supporting our customers in addressing their markets with 5G in the best possible way. We see that programmable networks and openness will drive value creation, which is a priority for our investments. Furthermore, much of the near future will be about AI and autonomous networks, where we are putting a lot of effort into creating significant value for the entire telecom industry. Ericsson has been active in AI for a long time, something we now see paying off in how we can develop networks.

Looking ahead, we are focusing on 6G, where standardization has now begun and where we are currently defining what the technology will enable. In 6G, AI will be fully integrated to enable extreme capabilities and fully automated operation.

How do developments in international trade and geopolitics affect your opportunities to grow in global markets?

Increased geopolitical tensions naturally pose challenges for Ericsson in the form of new trade barriers and increased protectionism, but at the same time, the situation opens up new opportunities through a growing focus on security and strategic bilateral partnerships.

In a rapidly changing trade policy with rising tariff levels, a global company like Ericsson, which has suppliers and production around the world, is affected. But we are also seeing growing demand for secure and reliable digital infrastructure, which strengthens Ericsson's position as a trusted 5G supplier. Critical technology such as digital infrastructure is now at the center of geopolitical developments, making Ericsson's innovation capabilities and global presence more strategically important than ever.

Different approaches to data flows create a complex trading environment

More and more countries are restricting the transfer of data across national borders. Europe and North America have relatively open systems with regulated controls, while several major emerging economies are introducing localization requirements that force companies to store data within their borders. In China and Russia, there is extensive government control, which in practice stops flows of digital information. This fragmentation threatens international trade in data services – the category that accounts for most of the tech industry's export value.

Some of the tech segments hardest hit by data restrictions are fintech, cloud services, and SaaS platforms, where competitiveness is based on scalability and global real-time data processing. For companies such as Klarna, Spotify, and Tink, local data storage requirements can lead to increased operating costs, higher energy consumption, and difficulties in offering user-customized content. A business survey by the OECD shows that localization requirements typically lead to a 16 percent increase in data management costs. If such local storage requirements are combined with data flow restrictions, the typical additional cost rises to 55 percent. So Studies have also linked data restrictions to significant productivity losses for local companies that use digital technology. S1

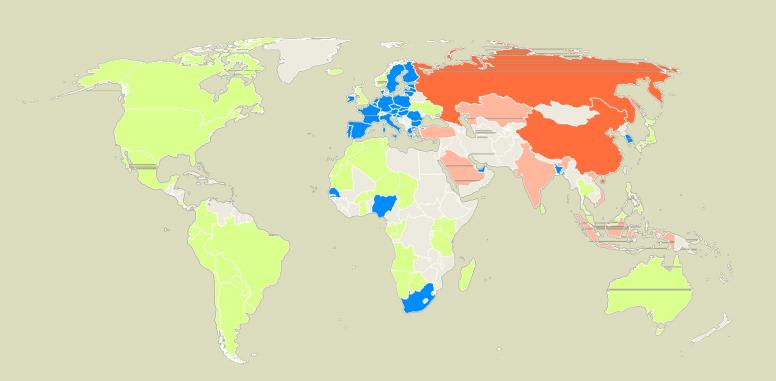
At the same time, the European General Data Protection Regulation (GDPR) can give Swedish companies a head start in markets where data protection has become a competitive factor, insofar as the regulations strengthen customer confidence. However, interaction with other legal systems is complex. For example, the bilateral EU-US Data Privacy Framework (DPF) agreement allows data transfers to approved companies in the US, while transfers to the UK can currently take place freely under the EU's adequacy decision.

Planned regulatory changes in the UK, however, may create uncertainty going forward.

If the trend toward fragmentation of data rules continues, the EU risks ending up in an intermediate position—neither as open as the US nor as closed as Asia. However, the needs of Swedish tech companies are multifaceted. Many companies are heavily dependent on openness and international cloud providers that offer cost-effectiveness, operational reliability, and global scalability, while others demand increased opportunities for local data storage and data management to meet customer and security requirements. Improved conditions for data centers in Sweden—for example, through reliable access to fossil-free energy, faster permitting processes, and competitive electricity prices—could increase companies' flexibility without jeopardizing the possibility of international cooperation.

⁵⁰ OECD, The Nature, Evolution and Potential Implications of Data Localisation Measures, Paris: OECD Publishing, 2023

⁵¹ World Bank, Trading for Development in the Age of Global Value Chains, Washington, D.C.: World Bank, 2020.


"Studies show that countries would gain on average about 4.5 percent in productivity if they removed their restrictive data policies, whereas the benefits of reducing data restrictions on trade in services would on average be about 5 percent."

- World Bank53

Cross-border data flows are being restricted in an increasing number of countries

Degree of restrictions on cross-border data transfers 52

⁵² Source: Cross-Border Data Policy Index, Global Data Alliance.

⁵³ World Bank, Trading for Development in the Age of Global Value Chains, Washington, D.C.: World Bank, 2020.

SUMMARY AND CONCLUSIONS OF THE THEMATIC CHAPTER

Challenges and opportunities for Swedish tech companies in an uncertain world

Sweden is in the midst of a global tug-of-war in which power is gradually shifting from raw materials to data. The US and China dominate technology value chains and, in 2025, have tested each other's economic resilience through tariffs and export restrictions. In this uncertain environment, Europe is seeking its role – often as a follower or regulatory force.

For a country as heavily dependent on exports as Sweden, access to open markets with free data flows – enabled by functioning digital infrastructure from submarine cables to data centers – has become at least as central as access to energy during the industrial era. When countries introduce requirements for local data storage or their own technical standards, Swedish companies are directly affected by increased costs

and reduced scalability. While more static data flows can sometimes be handled locally, dynamic and real-time services such as cloud, IoT and

Al usually require continuous data flows between countries. Restrictions on these flows can therefore quickly hamper innovation and competitiveness.

The Swedish tech trade is becoming increasingly digital, immaterial, and service-based. Most exports

Today, this value consists of data services, software licenses, and digital platforms. Behind this development are leading companies such as Ericsson, Spotify, Klarna, Evolution, Tietoevry, and Sinch—but also fast-growing players such as Lovable, Einride, and Doktor.se. They operate in a world where digital infrastructure and information flows have become strategic resources and where geopolitics, cybersecurity, and trade policy are increasingly intertwined.

Sweden's challenge going forward will be to combine openness and security – to protect data and build robust systems without isolating itself from the outside world. To succeed in this balancing act, tech companies need, among other things, a more developed internal EU market for services, better access to research resources, know-how and international expertise in growth-driving technology areas, and improved conditions for establishing and operating data centers. But it is not enough to strengthen companies' innovation capacity and competitiveness in a strictly economic sense. At a time when technology and geopolitics have converged, ever stronger collaboration between politics and business is needed to navigate between the world's economic and digital blocs.

Chapter 4

World view, future scenarios, and forecasts

This chapter provides an overview of the global and national forces that will shape the growth prospects of the tech industry in the coming years. We highlight:

- How the economy, geopolitics, and the investment climate are shaping the market in the short term.
- How structural drivers such as AI, cybersecurity, and industrial technology integration are affecting growth.
- What scenarios are expected for tech industry revenue and GDP share through 2028.

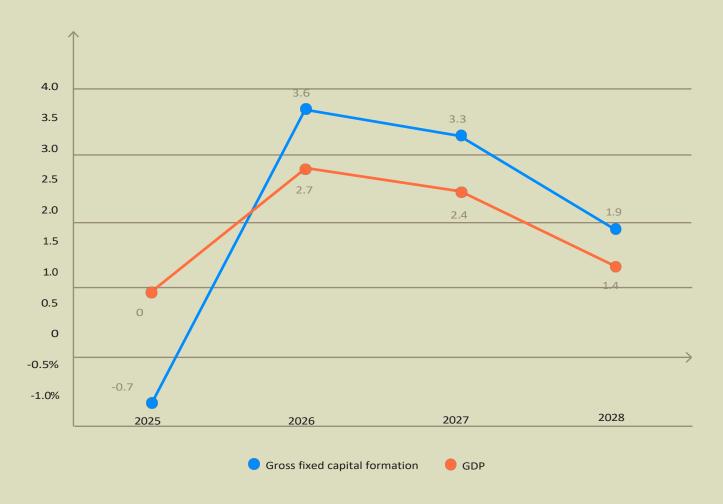
Fragile recovery may pick up in 2026

The economic recovery remains fragile. However, the weak performance of the Swedish economy in 2025 is expected to be followed by GDP growth of close to 3 percent in 2026, driven by rising real wages, increased investment, and falling interest rates, which will stimulate domestic demand.

However, weakness in the labor market and the risk of a slowdown in world trade and in the US give cause for caution. The sudden shifts in trade policy and the lingering effects of tariffs and export restrictions are gradually making themselves felt in the US economy. According to Eurostat, EU exports of goods to the US fell by 22 per cent in August 2025 compared with the same month in 2024, following an agreement between the blocs that significantly raised tariffs on most goods from the EU.54 Signs of a slowdown in the US led to the first interest rate cut since December 2024 in the autumn.

Historically, major protectionist measures have often had long-term effects on growth. For example, the US tariff policy in the early 1930s led

to a sharp decline in world trade and a deeper recession than necessary.55 Today's more developed trading system is largely based on service flows and does not risk the same collapse, but experience shows that even selective trade barriers can dampen investment appetite for several years. The current policy of confrontational and erratic protectionism therefore poses a long-term threat to complex value chains, especially for export-dependent industries such as the automotive industry.


For the Swedish tech industry, this means that subdued investment activity is putting pressure on demand from industry in the short term. At the same time, the need for digitalisation, automation and cyber security is increasing. Tech companies that can offer cost-effective solutions that strengthen productivity and resilience to disruptions in supply chains are thus well positioned for the next economic cycle.

 $^{^{\}rm 54}\,$ Frankl, Ed (2025), "EU Exports to U.S. Drop Sharply," The Wall Street Journal, October 16, 2025.


⁵⁵ Irwin, D. "The Smoot-Hawley Tariff: A Quantitative Assessment," The Review of Economics and Statistics, Vol. 80, No. 2 (May 1998), pp. 326–334.

Expected recovery in Swedish GDP and investment in 2026

Average forecasts for 2025–2028 according to Swedish forecasting institutes 56

⁵⁶ Source: National Institute of Economic Research. The average forecast is based on the five most recent forecasts in October 2025.

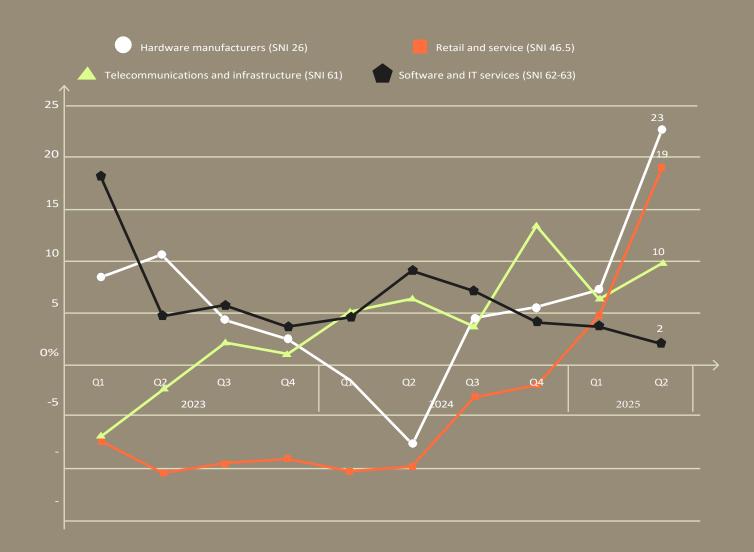
Hardware-focused tech growth in 2025

In 2025, the Swedish tech industry entered a new phase in which the focus of demand shifted from software to hardware and retail.

Hardware manufacturers turned from a sharp decline to rapid growth. Resale and service followed a similar path after many quarters of stagnation. Developments in the hardware-related segments during the first half of 2025 should be viewed in light of the imminent threat of sharply increased tariffs, which led to proactive stockpiling of components among customers — likely an important driver behind the upturn in sales.

For software and IT services companies, the tech industry's largest segment, the situation is challenging. The IT consulting market has slowed down in 2025, driven by both price pressure and reduced project volumes.

A company survey by Boston Consulting Group shows that technology buyers in 2025 became more


significantly more cautious between April—when extensive US tariffs were first announced—and September. The proportion of medium-sized and large European and US companies that reported growth in their IT budgets fell from 77 to 56 percent. Those companies that still planned to increase their IT spending expected to do so by about half as much as before the tariff announcement.57

The telecom sector is showing stable and positive growth, but is characterized by a cautious consumer market and a strong focus on cost control. Demand for new mobile phones is subdued as a result of the economic situation, but the corporate market recovered in the first half of 2025. Growth was mainly driven by increased service revenues in corporate solutions and fixed networks, where operators are benefiting from digitalization, increased 5G penetration, and growing security investments.

⁵⁷ Boston Consulting Group, Services Are the New Fault Lines in Global Trade, 2025.

Strong rebound in hardware and retail

Quarterly revenue growth in the Swedish tech industry, 2023–2025 58

⁵⁸ Source: Statistics Sweden, Turnover in the service sector and Industrial turnover and order bookings.

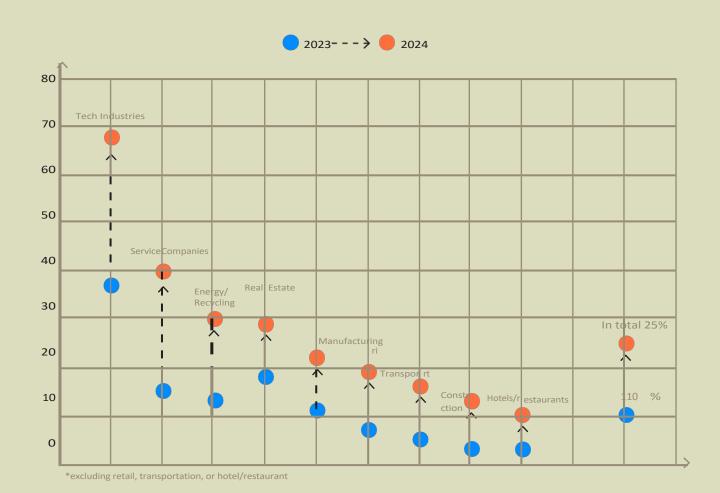
"The telecom sector shows a stable and positive growth trend, but is characterized by a cautious consumer market and a strong focus on cost control."

Increased use of AI is reshaping the business world

According to Gartner, global IT spending is expected to increase by 7.9% in 2025, mainly driven by Al-related investments and a rapidly growing digital infrastructure. The International Data Corporation (IDC) predicts that global Al investments will more than double between 2024 and 2028, corresponding to an average annual growth of 29 percent.

In the second quarter of 2025, nearly half of the world's venture capital investments (42 percent) went to projects in Al and machine learning.59 Given the high growth rate in Al, some analysts warn of speculative risks, as capital inflows are increasing faster than the productivity gains observed to date.60 At the same time, there is broad consensus that the technology has enormous potential to streamline operations in everything from industry to the public sector.

The use of AI is growing rapidly in the business sector following the breakthrough of generative AI and the rapidly growing range of cost-effective models and tools. In 2024, one in four Swedish companies reported using at least one AI tool, compared to one in ten in 2023.61 There was considerable variation between industries. The tech industry had come the furthest, with around seven out of ten tech companies using AI – reflecting both high digital competence and a culture of innovation and rapid implementation. Service and energy companies had also made significant strides, while traditional manufacturing, transportation, and construction remained at lower levels. Demand for solutions that make AI easier and more scalable in traditional industries is expected to grow rapidly in the coming years.


⁵⁹ Source: PitchBook (2025), Emerging Tech Indicator Q2 2025.

⁶⁰ Brown, E. and Whelan, R. Wall Street Journal (2025), "Spending on Al Is at Epic Levels. Will It Ever Pay Off?", 25 September 2025.

⁶¹ Source: Statistics Sweden, IT use in companies. The data was collected between February and August.

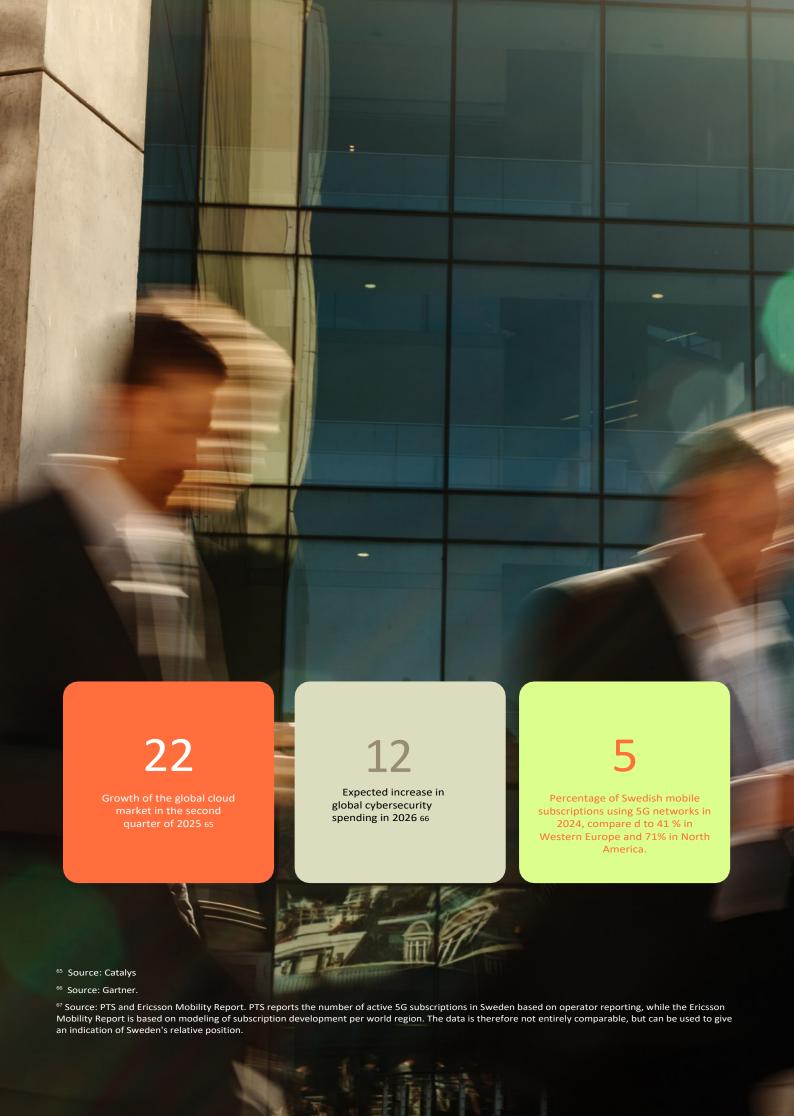
One in four companies used Al in 2024

Percentage of Swedish companies with 10 or more employees that reported using at least one AI technology, 2023–2024 62

⁶² Source: Statistics Sweden, IT use in companies.

Growing demand for cloud services, security, and 5G applications

Growth prospects in the tech industry are driven not only by AI applications but also by a range of other technology areas. These include cloud services, cybersecurity, smart industry, 5G applications and advanced connectivity, electrification and energy efficiency, autonomous vehicles, and deep tech development.


Global investment in cloud infrastructure increased by 22 percent year-on-year in the second quarter of 2025, marking four consecutive quarters of growth exceeding 20 percent. Significant investments are also being made in Sweden: Microsoft, for example, is investing SEK 33.7 billion in cloud and AI infrastructure in Sweden over a two-year period, and Brookfield is building

a data center in Strängnäs worth SEK 95 billion.63 64 At the same time, the needs within the cloud segment are becoming increasingly complex, which requires an increased supply of expertise in optimization and system integration.

Cybersecurity is another fast-growing area, driven by an ever-increasing security threat. The growing capacity of organized crime and increased attempts at influence from foreign powers are creating new demands for protection and resilience. Attacks on critical sectors such as education, healthcare, finance, and energy are becoming both more common and more serious. According to Gartner, global spending on cybersecurity is expected to increase by 12 percent in 2026.

⁶³ Mukherjee, S. Reuters (2024), "Microsoft to Invest \$3.2 Billion in Swedish Cloud and AI Infrastructure," June 3, 2024.

⁶⁴ Ek, H. Dagens industri (2024), "Record investment in Sweden – Brookfield invests SEK 95 billion," June 4, 2024.

Cyber threats are increasing — and opening up new growth opportunities

How do you view developments in your part of the tech sector right now – which trends or factors will have the greatest impact on your growth in the coming years?

"Our sector – cybersecurity – is driven by two factors. On the one hand, our customers are affected by the global situation, with concerns about the continuing increase in threats to critical infrastructure and the public sector. On the other hand, we are working

all with AI adaptation, while we also see demands for cost awareness. All in all, this means we have a lot to do, and our customers really want a partner who can help them navigate the cyber threat landscape. So despite clear cost awareness among customers, there are good growth opportunities for us, as the threat landscape is also increasing and our customers continue to invest in building resilience."

Which technology areas are you prioritizing in your future investments, and what is driving these choices?

achieve automation and thus be able to process larger amounts of data more quickly, but we are also seeing very rapid development in agentic AI. This development is also reshaping the landscape, and we are investing actively to be able to lead the development in Europe. Agentic AI will change how we do cybersecurity, and by being early adopters, we can also help our customers manage an increasing volume of threats."

How do developments in international trade and geopolitics affect your opportunities to grow in global markets?

"We are in the midst of this development — every day. We see a clear desire in Europe to strengthen its own resilience. At the same time, most customers are deeply embedded in the large American ecosystems of leading cybersecurity products. So we are seeing the beginnings of differentiation among our customers, with some moving much more clearly towards choosing European alternatives, while others are continuing with their established strategy. However, it is quite clear that even in the field of cybersecurity, the trend is to build a stronger Europe, and we hope to be able to take a clear position there.

"For the cybersecurity industry, most of the focus right now is on AI/ML. This is both to achieve

Opportunities

for the tech industry during the forecast period 2025–2028

Al and automation as growth drivers

The application of generative AI is expected to increase productivity and create new business models.

- The need for future-proofing

 Swedish tech companies are benefiting from global demand for secure, sustainable, and efficient digital solutions.
- Stabilization of the capital market

 Lower interest rates and improved access to venture capital are stimulating new expansion in startups and scaleups.
- The digital transformation of industry
 Increased integration between tech and industry, particularly in defense, automotive, and energy, is strengthening demand.
- Regulatory simplification for entrepreneurs and businesses can promote greater innovation and competitiveness.

Threat

for the tech industry during the forecast period 2025–2028

- Increased geopolitical fragmentation
 Trade barriers and security policy tensions threaten
- companies' value chains.
- Pressured profitability in the IT consulting segment
 - High competition and reallocation of IT budgets to security are leading to subdued growth.
- Skills shortage

 The lack of advanced technical skills risks slowing growth and reducing the competitiveness of Swedish tech.
- Regulatory burden

 New regulations for AI, cybersecurity, and background checks on investments entail high adaptation costs.
- Public in-house development
 When public actors develop their own systems instead of purchasing technology, innovation is hampered and the market shrinks.

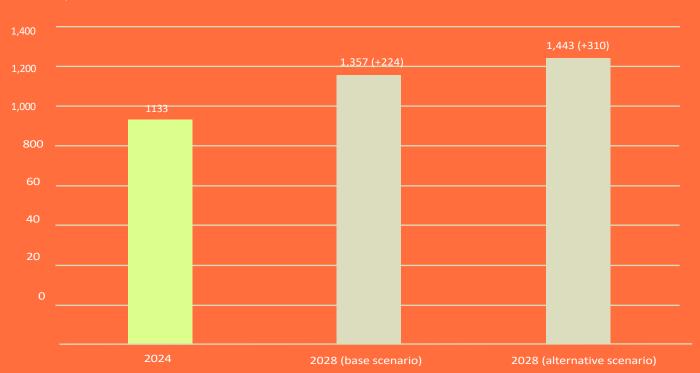
The tech industry is expected to grow by between 20 and 27 percent by 2028

The Swedish tech industry is expected to grow significantly in the coming years, despite temporary obstacles linked to the economic cycle and geopolitics. In TechSverige's base scenario, the tech industry's total turnover will increase from SEK 1,133 billion in 2024 to SEK 1,357 billion in 2028 – an increase of SEK 224 billion, corresponding to total growth of 20 percent. This represents an average annual growth rate of 4.7 percent – around 2.5 times higher than the expected growth for the business sector as a whole.

In the base scenario, domestic demand is expected to be subdued in 2026 as a result of restrained investment, protectionist trade policies, and uncertainty in export markets. At the same time, strong structural drivers remain in the form of digitalization, electrification, and increased use of AI, especially in the private sector. As the economic recovery gains momentum towards the end of 2026, growth will strengthen. The forecast implies that the tech industry's share of GDP will rise from 7.8 to 8.7 percent during the period. At the same time, the Swedish tech industry's share of the global tech market is expected to decline slightly in the base scenario – from 2.1 percent in 2024 to 1.8 percent in 2028.68

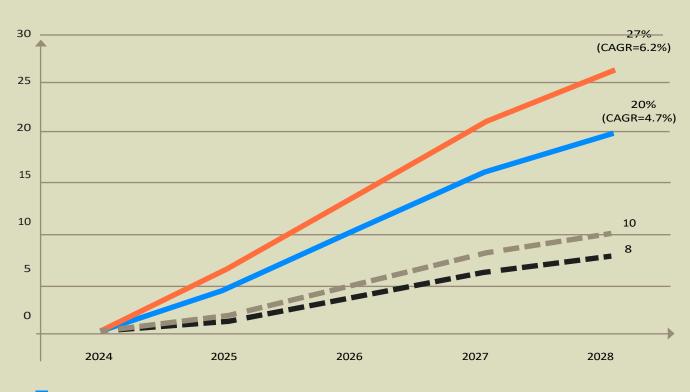
The alternative scenario is based on a faster global economic recovery and more constructive trade policy developments. Lower interest rates, increased willingness to invest, and faster dissemination of Al and automation solutions are driving a broader upturn in demand. In this scenario, the tech industry's turnover rises to SEK 1,443 billion in 2028 – an increase of SEK 277 billion or 27 percent compared to 2024. The higher growth rate is mainly driven by export-oriented companies and a stronger rate of technology investment in both the private and

public sectors. Digitalization and efficiency improvements will be crucial as global trade stabilizes and the tech industry's share of GDP reaches 9.2 percent in 2028. In the alternative scenario, the Swedish tech industry's global market share is expected to decline marginally

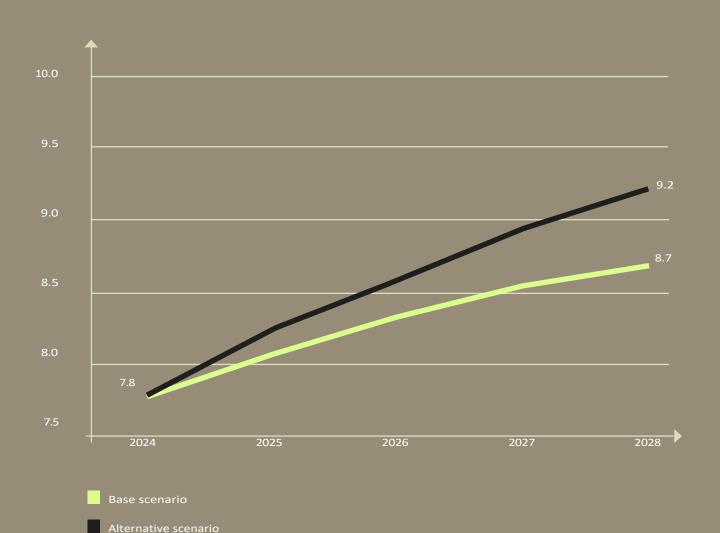

– from 2.1 percent in 2024 to 2.0 percent in 2028. For Sweden to keep pace with the rest of the world in the global tech race, average annual growth exceeding the 6.2 percent defined in the alternative scenario is therefore required.

⁶⁸ Estimates of the Swedish tech industry's share are based on Gartner's forecasts for the development of the global IT market.

Tech sales are expected to increase by up to SEK 310 billion


Scenario comparison: forecasts for tech industry turnover in 2028 (SEK billion)

The tech industry is growing two to three times faster than the business sector as a whole


Scenario comparison: cumulative revenue growth 2024–2028 in the tech industry vs. the economy as a whole. Refers to projected development in fixed prices. CAGR = compound annual growth rate

- Tech industry, base scenario
- Tech industry, alternative scenario
- Entire business sector, base scenario
- Entire business sector, alternative scenario

Tech industry GDP share grows to between 8.7 and 9.2 percent

Refers to the tech industry's value added (SNI 26 and 61–63) relative to GDP at basic prices, in 2015 prices, projected development 2024–2028

Tech as a growth anchor in a new geopolitical reality

Forecasts for the period 2025–2028 show that the Swedish tech industry will continue to strengthen its role as a foundation of the Swedish economy – a prerequisite for productivity in other industries – despite a more uncertain global environment. In the base scenario, the tech industry's turnover will grow to SEK 1,357 billion in 2028, while in the alternative scenario – with a faster international recovery and increased use of technology – it will reach SEK 1,443 billion. This corresponds to a share of GDP of 8.7 and 9.2 percent, respectively.

This development underscores that Swedish tech has established itself as a strategic industry of the future, but also that growth is taking place in a new geopolitical reality where trade, data flows, and tech exports are increasingly influenced by security policy

considerations. Experience shows that protectionist measures and market fragmentation can slow down the pace of investment long after they have been introduced. At the same time, this transition creates new opportunities for companies that can combine cutting-edge technology with trust, cybersecurity, and sustainability.

For Sweden to develop its position as a leading technation, reforms are now needed to secure the supply of skills, capital flows, and access to international markets. The tech industry is not only an engine for growth but also a crucial prerequisite for economic and strategic flexibility in a turbulent world. With the right conditions, Swedish tech can continue to drive productivity, innovation, and competitiveness—both at home and in global markets.

"For Sweden to develop its position as a leading tech nation, reforms are now needed to secure the supply of skills, capital flows, and access to international markets."

Appendix Forecast assumptions and related analysis

In order to understand and forecast the future development of the tech industry, revenue growth can be viewed as a result consisting of three growth components:

- Structural growth, which consists of an underlying, trend-based growth rate.
- Cyclical growth, a growth rate that depends on the general economic situation and the tech industry's correlation with the economic cycle.
- Economic shocks, events, or one-off phenomena that can either increase or decrease the growth rate.

The forecast scenarios in the report are based on structural growth in tech that is in line with developments over the past two decades. The long reference period means that variations over the business cycle largely even out. In order to estimate the impact of the economic situation on industry development, the forecasts have taken into account existing macro forecasts from the National Institute of Economic Research and other analysts (published in the third quarter of 2025), as well as the normal correlation between the general economic situation and the production value of the tech industry on a historical basis.

The alternative scenario in the forecasts assumes an economic development during the forecast horizon.

which is slightly stronger than in the base scenario. The alternative scenario assumes that new technologies such as AI and 5G will be gradually phased in and increase structural growth. As disruptive technologies, these are expected to bring about significant productivity gains in the economy, which will increase turnover per employee and therefore the structural growth rate.

In addition to the forecast growth rate, one possible source of error for industry turnover during the forecast period is the data on which the forecast is based regarding industry growth in 2024. This data is a preliminary outcome based on calculations using VAT statistics from the Swedish Tax Agency. If growth turns out to be significantly lower or higher than the preliminary figure indicates, the level in 2028 will also be affected.

The forecasts also assume zero growth in prices for tech products over the entire forecast period. This means that growth over the entire forecast period refers to both growth in SEK (current prices) and price-adjusted growth (in volumes). The assumption is in line with the long-term trend over the past 10 to 15 years, but constitutes a possible source of error. This applies not least if economic developments turn out differently than assumed in the forecasts, as economic developments are generally significant for general price trends.

Reference list

Boston Consulting Group. Services Are the New Fault Lines in Global Trade. 2025. Available at: https://www.bcg.com/publications/2025/services-are-the-new-fault-lines-in-global-trade (accessed October 16, 2025).

Brown, E. & Whelan, R. (2025). "Spending on AI Is at Epic Levels. Will It Ever Pay Off?", Wall Street Journal, 25 September 2025. Available at: https://www.wsj.com/tech/ai/ai-bubble-building-spree-55ee6128 (Retrieved October 20, 2025). Available at: https://www.wsj.com/tech/ai/ai-bubble-building-spree-55ee6128 (Retrieved October 20, 2025).

Ek, H. (2024). "Record investment in Sweden – Brookfield invests SEK 95 billion." Dagens industri, June 4, 2024. https://www.di.se/digital/rekordinvestering-i-sverige-brookfield-satsar-95-miljarder/ (accessed October 21, 2025).

Frankl, Ed (2025). Wall Street Journal, "EU Exports to U.S. Drop Sharply," The Wall Street Journal, October 16, 2025. https://www.wsj.com/economy/trade/eu-exports-to-u-s-drop-sharply-4b8df211 (accessed October 19, October 2025).

Ghodsi, M. (2021). Impact of Technical Barriers to Trade on the Trade in Goods in the Information and Communications Technology Sector: Differentiating by Aim of the Regulatory Measure. Working Paper 208. Vienna: The Vienna Institute for International Economic Studies. https://wiiw.ac.at/p-5906.html (accessed October 17, 2025).

Guinea, O., Sharma, V., van der Marel, E., & du Roy, O. (2025). Breaking Barriers, Boosting Growth: Unlocking the Power of Digital Technology for Europe's Competitiveness. ECIPE Policy Brief No. 14/2025. Brussels: European Centre for International Political Economy (ECIPE). https://ecipe.org/publications (accessed October 20, 2025).

Irwin, D. A. (1998). "The Smoot-Hawley Tariff: A Quantitative Assessment." The Review of Economics and Statistics, 80(2), 326–334. Cambridge, MA: The MIT Press. https://www.jstor.org/stable/2646642

McMorrow, R. & Smith, K. Financial Times, "China curbs use of Nokia and Ericsson in telecoms networks," October 2, 2025. https://www.ft.com/content/7d08731c-189e-4835-8cfa-048fe68611bd

Mukherjee, S. (2024). "Microsoft to Invest \$3.2 Billion in Swedish Cloud and AI Infrastructure." Reuters, June 3 June 2024. https://www.reuters.com/technology/microsoft-invest-32-bln-swedish-cloud-ai-2024-06-03/ (Retrieved October 21, 2025).

OECD (2023) The Nature, Evolution and Potential Implications of Data Localisation Measures. Paris: OECD Publishing. https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/11/the-nature-evo-lution-and-potential-implications-of-data-localisation-measures_249df37e/179f718a-en.pdf (accessed October 16 October 2025).

PitchBook (2025). Emerging Tech Indicator Q2 2025. Emerging Tech Research Series. London: PitchBook Data, Inc. https://pitchbook.com/news/reports (accessed October 20, 2025).

Productivity Commission (2025). More opportunities for increased prosperity. Final report of the Productivity Commission, SOU 2025:96. Stockholm: Ministry of Finance. https://www.regeringen.se/rattsliga-do-kument/statens-offentliga-utredningar/2025/09/sou-202596/ (accessed October 20, 2025).

Government (2025). Budget Bill for 2026. Bill 2025/26:1. Stockholm: Ministry of Finance. https://www.regeringen.se/rattsligadokument/proposition/2025/09/prop.-2025261/ (accessed October 21, 2025).

Statistics Sweden (SCB). Sweden's economy – Statistical perspective, number 6 2025: The economy slowed down in the first quarter of 2025. Large and foreign-owned companies dominate Swedish trade in services. Stockholm: SCB, 2025. https://www.scb.se/contentassets/e41fd39acdaf436183d83f633e53cd9a/nr0001_2025m06_ti_a28ti2506.pdf (retrieved October 16, 2025).

World Bank (2020). Trading for Development in the Age of Global Value Chains. Washington, D.C.: World Bank. https://www.worldbank.org/en/publication/wdr2020 (accessed October 17, 2025).

World Economic Forum (2023). Digital Transition Framework: An Action Plan for Public-Private Collaboration. Geneva: World Economic Forum, in collaboration with FTI Consulting. https://www.weforum.org/reports/ digital-transition-framework-an-action-plan-for-public-private-collaboration (retrieved 16 October 2025).

TechSverige

TechSverige is an industry and employer organization for all companies in the tech sector. Our mission is to work with our members, create the best possible conditions for a competitive Swedish tech industry that drives innovation and development throughout society. Our approximately 1,400 member companies—which together have nearly 100,000 employees in Sweden—range from startups to large multinational companies.

TechSweden's members are also members of the Confederation of Swedish Enterprise.

Please visit us at techsverige.se